Question

\( 4 x^{-5}-x^{-3}-7 x^{-4}+9 x^{-2}-7 x^{-1}+2 \) entre \( 4 x^{-2}+x^{-1}-3+2 x \)

Ask by Craig Kelly. in Mexico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Para simplificar la expresión \( \frac{4 x^{-5}-x^{-3}-7 x^{-4}+9 x^{-2}-7 x^{-1}+2}{4 x^{-2}+x^{-1}-3+2 x} \), primero expandimos y simplificamos tanto el numerador como el denominador. Luego, dividimos las dos expresiones simplificadas para obtener la forma final de la fracción.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

Pour simplifier l'expression donnée, il est utile de convertir tous les termes exponentiels en termes de fractions. On peut réécrire l'expression comme suit : Numerateur : \( \frac{4}{x^5} - \frac{1}{x^3} - \frac{7}{x^4} + \frac{9}{x^2} - \frac{7}{x} + 2 \) Dénominateur : \( \frac{4}{x^2} + \frac{1}{x} - 3 + 2x \) Pour effectuer la division des fractions, nous multiplions par l'inverse du dénominateur, ce qui donne : \[ \left(4 x^{-5}-x^{-3}-7 x^{-4}+9 x^{-2}-7 x^{-1}+2\right) \times \left(\frac{1}{\frac{4}{x^2} + \frac{1}{x} - 3 + 2x}\right) \] Ensuite, combinez et simplifiez les fractions, ce qui peut nécessiter la recherche d'un dénominateur commun. Une fois que vous avez effectué les opérations, n'oubliez pas de vérifier les simplifications possibles et de vous assurer que les valeurs de \(x\) ne rendent pas le dénominateur égal à zéro. Cela vous conduira à la solution finale de l'expression rationalisée.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy