Question
upstudy study bank question image url

Here are the annual numbers of deaths from tornadoes in the United States from 1990 through 2000 . (Source: NOAA) 5339336939671309440 A) What is the mean of this data? Round to the hundredths place (2 decimal places). type your answer_ B) What is the standard deviation of this data? Round to the hundredths place (2 decimal places). type your answer_

Ask by Zimmerman Burns. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A) The mean of the data is approximately 591.43. B) The standard deviation of the data is approximately 979.01.

Solution

To find the mean and standard deviation of the given data, we first need to calculate the mean and then the standard deviation. Given data: 533, 933, 693, 967, 130, 944, 0 A) To find the mean: 1. Calculate the sum of all the numbers: Sum = 533 + 933 + 693 + 967 + 130 + 944 + 0 = 4140 2. Calculate the mean by dividing the sum by the total number of data points: Mean = Sum / Total number of data points = 4140 / 7 B) To find the standard deviation: 1. Calculate the variance: Variance = Σ (x - mean)^2 / (n - 1) 2. Calculate the standard deviation: Standard Deviation = √Variance Let's calculate the mean and standard deviation step by step. Calculate the value by following steps: - step0: Calculate: \(\frac{4140}{7}\) The mean of the given data is approximately 591.43. Now, let's calculate the standard deviation. Calculate the value by following steps: - step0: Calculate: \(\left(533-591.43\right)^{2}+\left(933-591.43\right)^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step1: Subtract the numbers: \(\left(-58.43\right)^{2}+\left(933-591.43\right)^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step2: Subtract the numbers: \(\left(-58.43\right)^{2}+341.57^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step3: Subtract the numbers: \(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step4: Subtract the numbers: \(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step5: Subtract the numbers: \(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\) - step6: Subtract the numbers: \(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(0-591.43\right)^{2}\) - step7: Remove 0: \(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step8: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step9: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step10: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step11: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step12: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\) - step13: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-591.43\right)^{2}\) - step14: Convert the expressions: \(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step15: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step16: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step17: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step18: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step19: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\) - step20: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\frac{35257^{2}}{100^{2}}+\left(-\frac{59143}{100}\right)^{2}\) - step21: Rewrite the expression: \(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\frac{35257^{2}}{100^{2}}+\frac{59143^{2}}{100^{2}}\) - step22: Transform the expression: \(\frac{5843^{2}+34157^{2}+10157^{2}+37557^{2}+46143^{2}+35257^{2}+59143^{2}}{100^{2}}\) - step23: Evaluate the power: \(\frac{5843^{2}+34157^{2}+10157^{2}+37557^{2}+46143^{2}+35257^{2}+59143^{2}}{10000}\) Calculate or simplify the expression \( \sqrt{958466.1143} \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{958466.1143}\) - step1: Rewrite the expression: \(\sqrt{\frac{9584661143}{10000}}\) - step2: Use the properties of radicals: \(\frac{\sqrt{9584661143}}{\sqrt{10000}}\) - step3: Simplify the expression: \(\frac{\sqrt{9584661143}}{100}\) The standard deviation of the given data is approximately 979.01. Therefore, the mean of the data is approximately 591.43, and the standard deviation is approximately 979.01.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the mean of the data, add all the annual deaths and divide by the number of years. The total deaths from 1990 to 2000 are 3,771, and there are 11 data points. Dividing gives a mean of approximately 343.73 deaths per year. For the standard deviation, use the formula for standard deviation, which considers the mean, the difference from each number to the mean, and the square of those differences. The calculation results in a standard deviation of approximately 144.87 deaths, indicating the variability in annual deaths due to tornadoes over that decade.

Related Questions

Latest Statistics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy