Giten: \( \tan \alpha=\frac{3}{4} \); where \( \alpha \in\left[0^{\circ} ; 90^{\circ}\right] \) With the use of a sketch and without the use of a calculator, calculate. \( \sin \alpha \) \( 9.2 \cos ^{2}\left(90^{\circ}-\alpha\right)-1 \) \( 1-\sin 2 \alpha \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To solve for \( \sin \alpha \) given \( \tan \alpha = \frac{3}{4} \), draw a right triangle where the opposite side (to angle \( \alpha \)) is 3 units and the adjacent side is 4 units. By using the Pythagorean theorem, the hypotenuse is \( \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \). Thus, \( \sin \alpha = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} \). Next, for \( 9.2 \cos^2(90^\circ - \alpha) - 1 \), note that \( \cos(90^\circ - \alpha) = \sin \alpha \). Therefore, \( \cos^2(90^\circ - \alpha) = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \). Calculating gives \( 9.2 \cdot \frac{9}{25} - 1 = 3.312 - 1 = 2.312 \). Lastly, for \( 1 - \sin 2\alpha \), we use the double angle formula, where \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \). First, find \( \cos \alpha \) using \( \tan \alpha = \frac{3}{4} \) which gives \( \cos \alpha = \frac{4}{5} \). Thus, \( \sin 2\alpha = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \). Therefore, \( 1 - \sin 2\alpha = 1 - \frac{24}{25} = \frac{1}{25} \).