Question
upstudy study bank question image url

Giten: \( \tan \alpha=\frac{3}{4} \); where \( \alpha \in\left[0^{\circ} ; 90^{\circ}\right] \) With the use of a sketch and without the use of a calculator, calculate. \( \sin \alpha \) \( 9.2 \cos ^{2}\left(90^{\circ}-\alpha\right)-1 \) \( 1-\sin 2 \alpha \)

Ask by Todd Barber. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \sin \alpha = \frac{3}{5} \), \( 9.2 \cos^2(90^{\circ} - \alpha) - 1 = 2.312 \), \( 1 - \sin 2\alpha = \frac{1}{25} \).

Solution

To solve the problem, we start with the given condition: \[ \tan \alpha = \frac{3}{4} \] This means that in a right triangle where angle \( \alpha \) is one of the angles, the opposite side to \( \alpha \) is 3 units and the adjacent side is 4 units. We can use this information to find \( \sin \alpha \), \( \cos \alpha \), and subsequently solve the other expressions. ### Step 1: Calculate \( \sin \alpha \) Using the definition of sine in a right triangle: \[ \sin \alpha = \frac{\text{opposite}}{\text{hypotenuse}} \] First, we need to find the hypotenuse \( h \) using the Pythagorean theorem: \[ h = \sqrt{(\text{opposite})^2 + (\text{adjacent})^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Now we can find \( \sin \alpha \): \[ \sin \alpha = \frac{3}{5} \] ### Step 2: Calculate \( 9.2 \cos^2(90^{\circ} - \alpha) - 1 \) Using the co-function identity, we know that: \[ \cos(90^{\circ} - \alpha) = \sin \alpha \] Thus, \[ \cos^2(90^{\circ} - \alpha) = \sin^2 \alpha = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \] Now we can substitute this into the expression: \[ 9.2 \cos^2(90^{\circ} - \alpha) - 1 = 9.2 \cdot \frac{9}{25} - 1 \] Calculating \( 9.2 \cdot \frac{9}{25} \): \[ 9.2 \cdot \frac{9}{25} = \frac{9.2 \cdot 9}{25} = \frac{82.8}{25} = 3.312 \] Now, subtract 1: \[ 3.312 - 1 = 2.312 \] ### Step 3: Calculate \( 1 - \sin 2\alpha \) Using the double angle formula for sine: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] We already have \( \sin \alpha = \frac{3}{5} \). Now we need to find \( \cos \alpha \): \[ \cos \alpha = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \] Now we can calculate \( \sin 2\alpha \): \[ \sin 2\alpha = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = 2 \cdot \frac{12}{25} = \frac{24}{25} \] Finally, we can find \( 1 - \sin 2\alpha \): \[ 1 - \sin 2\alpha = 1 - \frac{24}{25} = \frac{1}{25} \] ### Summary of Results 1. \( \sin \alpha = \frac{3}{5} \) 2. \( 9.2 \cos^2(90^{\circ} - \alpha) - 1 = 2.312 \) 3. \( 1 - \sin 2\alpha = \frac{1}{25} \) These are the final answers for the given expressions.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve for \( \sin \alpha \) given \( \tan \alpha = \frac{3}{4} \), draw a right triangle where the opposite side (to angle \( \alpha \)) is 3 units and the adjacent side is 4 units. By using the Pythagorean theorem, the hypotenuse is \( \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \). Thus, \( \sin \alpha = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} \). Next, for \( 9.2 \cos^2(90^\circ - \alpha) - 1 \), note that \( \cos(90^\circ - \alpha) = \sin \alpha \). Therefore, \( \cos^2(90^\circ - \alpha) = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \). Calculating gives \( 9.2 \cdot \frac{9}{25} - 1 = 3.312 - 1 = 2.312 \). Lastly, for \( 1 - \sin 2\alpha \), we use the double angle formula, where \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \). First, find \( \cos \alpha \) using \( \tan \alpha = \frac{3}{4} \) which gives \( \cos \alpha = \frac{4}{5} \). Thus, \( \sin 2\alpha = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \). Therefore, \( 1 - \sin 2\alpha = 1 - \frac{24}{25} = \frac{1}{25} \).

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy