Answer
The mass of rain that falls on the lawn in 6 minutes is approximately 0.2 kg.
Solution
To find the mass of rain that falls on the lawn in 6 minutes, we can follow these steps:
1. **Calculate the number of raindrops that fall in 6 minutes.**
- We know that \( 2.6 \times 10^{3} \) raindrops fall every 10 minutes.
- Therefore, in 1 minute, the number of raindrops that fall is:
\[
\text{Raindrops per minute} = \frac{2.6 \times 10^{3}}{10}
\]
- In 6 minutes, the total number of raindrops is:
\[
\text{Total raindrops in 6 minutes} = \text{Raindrops per minute} \times 6
\]
2. **Calculate the total mass of the raindrops in milligrams.**
- Each raindrop weighs 160 mg, so the total mass in milligrams is:
\[
\text{Total mass (mg)} = \text{Total raindrops in 6 minutes} \times 160
\]
3. **Convert the total mass from milligrams to kilograms.**
- Since \( 1 \, \text{kg} = 10^{6} \, \text{mg} \), we convert the mass to kilograms by dividing by \( 10^{6} \).
Now, let's perform the calculations step by step.
### Step 1: Calculate the number of raindrops in 6 minutes
\[
\text{Raindrops per minute} = \frac{2.6 \times 10^{3}}{10} = 2.6 \times 10^{2}
\]
\[
\text{Total raindrops in 6 minutes} = 2.6 \times 10^{2} \times 6
\]
### Step 2: Calculate the total mass in milligrams
\[
\text{Total mass (mg)} = \text{Total raindrops in 6 minutes} \times 160
\]
### Step 3: Convert to kilograms
\[
\text{Total mass (kg)} = \frac{\text{Total mass (mg)}}{10^{6}}
\]
Now, let's calculate these values.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2.6\times 10^{3}}{10}\times 6\)
- step1: Reduce the fraction:
\(2.6\times 10^{2}\times 6\)
- step2: Rewrite the expression:
\(26\times 10\times 6\)
- step3: Multiply the terms:
\(260\times 6\)
- step4: Multiply the numbers:
\(1560\)
Calculate or simplify the expression \( 160 * ((2.6 * 10^3) / 10 * 6) \).
Calculate the value by following steps:
- step0: Calculate:
\(160\left(\frac{2.6\times 10^{3}}{10}\times 6\right)\)
- step1: Remove the parentheses:
\(160\times \frac{2.6\times 10^{3}}{10}\times 6\)
- step2: Reduce the fraction:
\(160\times 2.6\times 10^{2}\times 6\)
- step3: Multiply the terms:
\(2496\times 10^{2}\)
- step4: Evaluate the power:
\(2496\times 100\)
- step5: Multiply:
\(249600\)
Calculate or simplify the expression \( 249600 / 10^6 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{249600}{10^{6}}\)
- step1: Rewrite the expression:
\(\frac{100\times 2496}{10^{6}}\)
- step2: Rewrite the expression:
\(\frac{10^{2}\times 2496}{10^{6}}\)
- step3: Reduce the fraction:
\(\frac{2496}{10^{4}}\)
- step4: Rewrite the expression:
\(\frac{64\times 39}{10^{4}}\)
- step5: Rewrite the expression:
\(\frac{64\times 39}{2^{4}\times 5^{4}}\)
- step6: Rewrite the expression:
\(\frac{2^{6}\times 39}{2^{4}\times 5^{4}}\)
- step7: Reduce the fraction:
\(\frac{2^{2}\times 39}{5^{4}}\)
- step8: Calculate:
\(\frac{156}{5^{4}}\)
- step9: Evaluate the power:
\(\frac{156}{625}\)
Let's summarize the calculations:
1. **Total raindrops in 6 minutes:**
\[
\text{Total raindrops in 6 minutes} = 1560
\]
2. **Total mass in milligrams:**
\[
\text{Total mass (mg)} = 160 \times 1560 = 249600 \, \text{mg}
\]
3. **Convert to kilograms:**
\[
\text{Total mass (kg)} = \frac{249600}{10^{6}} = 0.2496 \, \text{kg}
\]
Finally, rounding to one decimal place, the mass of rain that falls on the lawn in 6 minutes is:
\[
\text{Mass} \approx 0.2 \, \text{kg}
\]
Thus, the answer is \( 0.2 \, \text{kg} \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution