Question
Upstudy AI Solution
Tutor-Verified Answer
Answer
El resultado es 1,771,561.
Solution
Para resolver la expresión \( \left[(-11)^{2}\right]^{3} \), seguiremos estos pasos:
1. **Calcular \((-11)^{2}\):**
\[
(-11)^{2} = (-11) \times (-11) = 121
\]
2. **Elevar el resultado al cubo:**
\[
121^{3} = 121 \times 121 \times 121
\]
Primero, calculamos \(121 \times 121\):
\[
121 \times 121 = 14,\!641
\]
Luego, multiplicamos el resultado por 121 nuevamente:
\[
14,\!641 \times 121 = 1,\!771,\!561
\]
**Resultado final:**
\[
\left[(-11)^{2}\right]^{3} = 1,\!771,\!561
\]
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Bonus Knowledge
First, let’s break this down a bit! When we calculate \( (-11)^{2} \), we get \( 121 \), since squaring a negative number gives a positive result. Now, we raise that to the power of 3: \( 121^{3} \). Following through, \( 121^{3} = 1,770,121 \). So, \( \left[(-11)^{2}\right]^{3} = 1,770,121 \). Isn’t it fascinating how the rules of exponents help us navigate through calculations with ease?