Answer
- **Loan's Discount:** \$241.67
- **Net Amount Received:** \$2,658.33
- **Actual Rate of Interest:** 65.45%
Solution
To solve the problem, we will follow these steps:
1. **Calculate the loan's discount.**
2. **Determine the net amount of money Ramogi receives.**
3. **Calculate the loan's actual rate of interest.**
### Step 1: Calculate the Loan's Discount
The formula for calculating the discount on a loan is given by:
\[
D = P \times r \times t
\]
where:
- \( D \) is the discount,
- \( P \) is the principal amount (loan amount),
- \( r \) is the rate of interest (as a decimal),
- \( t \) is the time in years.
Given:
- \( P = 2900 \)
- \( r = 5\% = 0.05 \)
- \( t = \frac{20}{12} \) years (since 20 months is \(\frac{20}{12}\) years)
Now, we can calculate the discount \( D \).
### Step 2: Determine the Net Amount of Money Ramogi Receives
The net amount received can be calculated as:
\[
N = P - D
\]
where:
- \( N \) is the net amount received.
### Step 3: Calculate the Loan's Actual Rate of Interest
The actual rate of interest can be calculated using the formula:
\[
\text{Actual Rate} = \frac{D}{N} \times \frac{12}{t} \times 100
\]
Now, let's perform the calculations step by step.
First, we will calculate the discount \( D \).
Let's calculate \( D \) and then proceed to find \( N \) and the actual rate of interest.
Calculate the value by following steps:
- step0: Calculate:
\(2900\times 0.05\left(\frac{20}{12}\right)\)
- step1: Reduce the fraction:
\(2900\times 0.05\times \frac{5}{3}\)
- step2: Multiply the terms:
\(145\times \frac{5}{3}\)
- step3: Multiply:
\(\frac{145\times 5}{3}\)
- step4: Multiply:
\(\frac{725}{3}\)
Calculate or simplify the expression \( 2900 - (2900 * 0.05 * (20/12)) \).
Calculate the value by following steps:
- step0: Calculate:
\(2900-\left(2900\times 0.05\left(\frac{20}{12}\right)\right)\)
- step1: Reduce the fraction:
\(2900-\left(2900\times 0.05\times \frac{5}{3}\right)\)
- step2: Multiply the terms:
\(2900-\frac{725}{3}\)
- step3: Reduce fractions to a common denominator:
\(\frac{2900\times 3}{3}-\frac{725}{3}\)
- step4: Transform the expression:
\(\frac{2900\times 3-725}{3}\)
- step5: Multiply the numbers:
\(\frac{8700-725}{3}\)
- step6: Subtract the numbers:
\(\frac{7975}{3}\)
Calculate or simplify the expression \( (2900 * 0.05 * (20/12)) / (2900 - (2900 * 0.05 * (20/12))) * (12 / (20/12)) * 100 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(2900\times 0.05\left(\frac{20}{12}\right)\right)}{\left(2900-\left(2900\times 0.05\left(\frac{20}{12}\right)\right)\right)}\times \left(\frac{12}{\left(\frac{20}{12}\right)}\right)\times 100\)
- step1: Remove the parentheses:
\(\frac{2900\times 0.05\left(\frac{20}{12}\right)}{2900-\left(2900\times 0.05\left(\frac{20}{12}\right)\right)}\times \left(\frac{12}{\frac{20}{12}}\right)\times 100\)
- step2: Reduce the fraction:
\(\frac{2900\times 0.05\times \frac{5}{3}}{2900-\left(2900\times 0.05\left(\frac{20}{12}\right)\right)}\times \left(\frac{12}{\frac{20}{12}}\right)\times 100\)
- step3: Reduce the fraction:
\(\frac{2900\times 0.05\times \frac{5}{3}}{2900-\left(2900\times 0.05\times \frac{5}{3}\right)}\times \left(\frac{12}{\frac{20}{12}}\right)\times 100\)
- step4: Multiply the terms:
\(\frac{2900\times 0.05\times \frac{5}{3}}{2900-\frac{725}{3}}\times \left(\frac{12}{\frac{20}{12}}\right)\times 100\)
- step5: Reduce the fraction:
\(\frac{2900\times 0.05\times \frac{5}{3}}{2900-\frac{725}{3}}\times \left(\frac{12}{\frac{5}{3}}\right)\times 100\)
- step6: Divide the terms:
\(\frac{2900\times 0.05\times \frac{5}{3}}{2900-\frac{725}{3}}\times \frac{36}{5}\times 100\)
- step7: Multiply the terms:
\(\frac{\frac{725}{3}}{2900-\frac{725}{3}}\times \frac{36}{5}\times 100\)
- step8: Subtract the numbers:
\(\frac{\frac{725}{3}}{\frac{7975}{3}}\times \frac{36}{5}\times 100\)
- step9: Divide the terms:
\(\frac{1}{11}\times \frac{36}{5}\times 100\)
- step10: Multiply the terms:
\(\frac{36}{55}\times 100\)
- step11: Reduce the numbers:
\(\frac{36}{11}\times 20\)
- step12: Multiply:
\(\frac{36\times 20}{11}\)
- step13: Multiply:
\(\frac{720}{11}\)
### Step 1: Calculate the Loan's Discount
The discount \( D \) is calculated as follows:
\[
D = 2900 \times 0.05 \times \frac{20}{12} = 241.67 \text{ (approximately)}
\]
### Step 2: Determine the Net Amount of Money Ramogi Receives
Now, we can find the net amount \( N \):
\[
N = 2900 - D = 2900 - 241.67 = 2658.33 \text{ (approximately)}
\]
### Step 3: Calculate the Loan's Actual Rate of Interest
The actual rate of interest is calculated as:
\[
\text{Actual Rate} = \frac{D}{N} \times \frac{12}{\frac{20}{12}} \times 100
\]
Substituting the values:
\[
\text{Actual Rate} = \frac{241.67}{2658.33} \times \frac{12}{\frac{20}{12}} \times 100
\]
Calculating this gives us:
\[
\text{Actual Rate} \approx 65.45\%
\]
### Summary of Results
1. **Loan's Discount:** \( D \approx 241.67 \)
2. **Net Amount Received:** \( N \approx 2658.33 \)
3. **Actual Rate of Interest:** \( \approx 65.45\% \) (to the nearest hundredth of a percent)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution