Question
upstudy study bank question image url

\( \frac { \sqrt[ n ] { 2 + x } } { 2 } = \sqrt[ n ] { 2 x } - \frac { \sqrt[ n ] { 2 + x } } { x } \)

Ask by Sherman Rodriguez. in Ecuador
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la ecuación es \( x = 2 \).

Solution

Queremos resolver la ecuación   (√[n](2 + x))⁄2 = √[n](2x) – (√[n](2 + x))⁄x. A continuación, se muestra un procedimiento paso a paso: 1. Escribamos la ecuación original de forma clara:   √[n](2 + x)⁄2 = √[n](2x) – √[n](2 + x)⁄x. 2. Llevamos el término con √[n](2 + x)⁄x al mismo lado que el otro término que involucra √[n](2 + x). Así, sumamos (√[n](2 + x))/x a ambos lados:   (√[n](2 + x))/2 + (√[n](2 + x))/x = √[n](2x). 3. Factorizamos √[n](2 + x) en el lado izquierdo:   √[n](2 + x)·(1/2 + 1/x) = √[n](2x). 4. Observamos que 1/2 + 1/x tiene común denominador:   1/2 + 1/x = (x + 2)/(2x). Por lo que la ecuación queda:   √[n](2 + x) · ((x + 2)/(2x)) = √[n](2x). 5. Multiplicamos ambos lados por 2x (recordando que x ≠ 0):   √[n](2 + x) · (x + 2) = 2x · √[n](2x). 6. Ahora, elevamos ambos lados a la n-ésima potencia para “eliminar” las raíces. (Suponemos que n es un número natural positivo y que las expresiones están definidas):   [√[n](2 + x) · (x + 2)]ⁿ = [2x · √[n](2x)]ⁿ. Recordemos que (√[n](A))ⁿ = A. Por tanto, el miembro izquierdo se transforma en:   (2 + x) · (x + 2)ⁿ, y el miembro derecho en:   (2x)ⁿ · (√[n](2x))ⁿ = (2x)ⁿ · (2x) = (2x)^(n+1). Pero notamos que 2 + x es lo mismo que x + 2, por lo que:   (x + 2)^(n+1) = (2x)^(n+1). 7. Si (x + 2)^(n+1) = (2x)^(n+1) y suponiendo que n + 1 ≠ 0 (lo cual es cierto para n ∈ ℕ⁺), entonces elevando a la potencia (n+1)-ésima inversa (o bien tomando la raíz (n + 1)-ésima) obtenemos:   x + 2 = 2x. 8. De la ecuación x + 2 = 2x despejamos x:   2 = 2x – x ⟹ 2 = x. Verifiquemos rápidamente: al sustituir x = 2 en la ecuación original tenemos   Lado izquierdo: √[n](2 + 2)⁄2 = √[n](4)⁄2.   Lado derecho: √[n](2·2) – √[n](4)/2 = √[n](4) – √[n](4)/2 = √[n](4)/2. Así, ambos lados son iguales. Por lo tanto, la solución de la ecuación es:   x = 2.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To dive deeper into the equation you've presented, let's unravel a bit of its history and application. This type of expression often comes up in advanced algebra or calculus, particularly when discussing radical equations and their properties. The manipulation of such equations dates back to the work of mathematicians like Descartes and Newton, who laid the groundwork for algebraic equation solving. The fascinating part is how these principles are not just historical footnotes; they lay the foundation for modern computation and engineering problems. In real-world applications, equations like this can be encountered in fields ranging from physics to finance, where understanding the relationships between different variables, such as growth rates or resistance in circuits, is crucial. For example, when it comes to calculating values in experimental physics, having these mathematical tools allows scientists to model and predict behaviors with astonishing precision. So, whether you're analyzing an investment portfolio or designing an electronic circuit, these seemingly abstract formulas play a significant role!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy