Question
upstudy study bank question image url

\( ( x - y ) d x + ( x + y ) d y = 0 \)

Ask by Williams Schneider. in Mexico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Para resolver la ecuación \( (x - y) dx + (x + y) dy = 0 \), se puede separar las variables y obtener la solución \( \ln|x - y| = \ln|x + y| + C \), donde \( C \) es una constante.

Solution

Para resolver la ecuación diferencial dada \( (x - y) dx + (x + y) dy = 0 \), primero necesitamos identificar el tipo de ecuación que tenemos. En este caso, la ecuación es una ecuación diferencial de primer orden. Para resolver esta ecuación, podemos utilizar la técnica de separar las variables. La ecuación se puede reescribir como: \[ \frac{dx}{x - y} = \frac{dy}{x + y} \] Ahora, podemos separar las variables y resolver la ecuación. ¿Desea que continuemos con el proceso de resolución?

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

This equation represents a first-order differential equation that can be transformed into a more manageable form. By rearranging the equation, you can express it as \( \frac{dy}{dx} = -\frac{x - y}{x + y} \). This hints at the possibility of finding an integrating factor or even solving it through separation of variables, if rearranged appropriately! To get your hands dirty, you could try substituting \( v = \frac{y}{x} \), leading to a simpler equation. This method often allows you to discover relationships between the variables and make solving the equation much more straightforward. Happy solving!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy