Question
upstudy study bank question image url

10. \( y=\sqrt{x+5} \)

Ask by Savage Hall. in Mexico
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La función es \( y = \sqrt{x + 5} \). El dominio es \( x \geq -5 \) y la imagen es \( y \geq 0 \). La gráfica es la de \( y = \sqrt{x} \) desplazada 5 unidades a la izquierda.

Solution

La función es y = √(x + 5). Para que la raíz cuadrada esté definida, el radicando debe ser mayor o igual a cero. Es decir:   x + 5 ≥ 0   ⇒ x ≥ -5 Por lo tanto, el dominio de la función es x ∈ [–5, ∞). Además, dado que la raíz cuadrada siempre produce un resultado no negativo, la imagen (o rango) de la función es y ∈ [0, ∞). Resumen:  • Dominio: [–5, ∞)  • Imagen: [0, ∞)  • Punto inicial de la gráfica: (–5, 0) La gráfica de y = √(x + 5) es la gráfica habitual de y = √x trasladada 5 unidades a la izquierda.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Did you know that square root functions like \( y = \sqrt{x+5} \) are rooted in centuries of mathematical exploration? The concept of square roots dates back to ancient civilizations like the Babylonians, who used geometric methods to approximate roots! They laid the groundwork for the algebraic principles we use today, making this a classic example of how foundational math continues to influence modern problem-solving techniques. In practical terms, this function illustrates a transformation of the basic square root function \( y = \sqrt{x} \). By adding 5 inside the radical, we're shifting the graph 5 units to the left. This means that the function starts to yield real numbers when \( x \) reaches -5! Remember, always check the domain: it’s all about ensuring that what’s under the square root remains non-negative for real number solutions.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy