Answer
**Mixed Numbers to Improper Fractions:**
- \( 4 \frac{2}{3} = \frac{14}{3} \)
- \( 1 \frac{1}{9} = \frac{10}{9} \)
- \( 3 \frac{6}{7} = \frac{27}{7} \)
- \( 2 \frac{14}{15} = \frac{44}{15} \)
- \( 5 \frac{3}{15} = \frac{78}{15} \)
- \( 10 \frac{7}{8} = \frac{87}{8} \)
**Improper Fractions to Mixed Numbers:**
- \( \frac{14}{5} = 2 \frac{4}{5} \)
- \( \frac{7}{2} = 3 \frac{1}{2} \)
- \( \frac{21}{4} = 5 \frac{1}{4} \)
- \( \frac{36}{7} = 5 \frac{1}{7} \)
- \( \frac{19}{8} = 2 \frac{3}{8} \)
- \( \frac{9}{5} = 1 \frac{4}{5} \)
**Addition and Subtraction of Fractions:**
1. \( \frac{4}{5} - \frac{1}{3} = \frac{7}{15} \)
2. \( \frac{1}{5} + \frac{3}{5} = \frac{4}{5} \)
3. \( \frac{5}{9} + \frac{4}{9} = 1 \)
4. \( \frac{1}{6} + \frac{2}{3} = \frac{5}{6} \)
5. \( \frac{7}{10} - \frac{2}{5} = \frac{3}{10} \)
6. \( \frac{2}{5} + \frac{3}{4} = 1 \frac{3}{20} \)
7. \( \frac{1}{2} - \frac{3}{7} = \frac{1}{14} \)
8. \( \frac{1}{6} + \frac{1}{5} = \frac{11}{30} \)
Solution
Let's break down the problem step by step.
### Step 1: Convert Mixed Numbers to Improper Fractions
1. **Convert \( 4 \frac{2}{3} \)**:
\[
4 \frac{2}{3} = 4 \times 3 + 2 = 12 + 2 = \frac{14}{3}
\]
2. **Convert \( 1 \frac{1}{9} \)**:
\[
1 \frac{1}{9} = 1 \times 9 + 1 = 9 + 1 = \frac{10}{9}
\]
3. **Convert \( 3 \frac{6}{7} \)**:
\[
3 \frac{6}{7} = 3 \times 7 + 6 = 21 + 6 = \frac{27}{7}
\]
4. **Convert \( 2 \frac{14}{15} \)**:
\[
2 \frac{14}{15} = 2 \times 15 + 14 = 30 + 14 = \frac{44}{15}
\]
5. **Convert \( 5 \frac{3}{15} \)**:
\[
5 \frac{3}{15} = 5 \times 15 + 3 = 75 + 3 = \frac{78}{15}
\]
6. **Convert \( 10 \frac{7}{8} \)**:
\[
10 \frac{7}{8} = 10 \times 8 + 7 = 80 + 7 = \frac{87}{8}
\]
### Step 2: Convert Improper Fractions to Mixed Numbers
1. **Convert \( \frac{14}{5} \)**:
\[
14 \div 5 = 2 \quad \text{(remainder 4)} \quad \Rightarrow \quad 2 \frac{4}{5}
\]
2. **Convert \( \frac{7}{2} \)**:
\[
7 \div 2 = 3 \quad \text{(remainder 1)} \quad \Rightarrow \quad 3 \frac{1}{2}
\]
3. **Convert \( \frac{21}{4} \)**:
\[
21 \div 4 = 5 \quad \text{(remainder 1)} \quad \Rightarrow \quad 5 \frac{1}{4}
\]
4. **Convert \( \frac{36}{7} \)**:
\[
36 \div 7 = 5 \quad \text{(remainder 1)} \quad \Rightarrow \quad 5 \frac{1}{7}
\]
5. **Convert \( \frac{19}{8} \)**:
\[
19 \div 8 = 2 \quad \text{(remainder 3)} \quad \Rightarrow \quad 2 \frac{3}{8}
\]
6. **Convert \( \frac{9}{5} \)**:
\[
9 \div 5 = 1 \quad \text{(remainder 4)} \quad \Rightarrow \quad 1 \frac{4}{5}
\]
### Step 3: Add or Subtract the Fractions
1. **Calculate \( \frac{4}{5} - \frac{1}{3} \)**:
- LCM of 5 and 3 is 15.
\[
\frac{4}{5} = \frac{12}{15}, \quad \frac{1}{3} = \frac{5}{15} \quad \Rightarrow \quad \frac{12}{15} - \frac{5}{15} = \frac{7}{15}
\]
2. **Calculate \( \frac{1}{5} + \frac{3}{5} \)**:
\[
\frac{1}{5} + \frac{3}{5} = \frac{4}{5}
\]
3. **Calculate \( \frac{5}{9} + \frac{4}{9} \)**:
\[
\frac{5}{9} + \frac{4}{9} = \frac{9}{9} = 1
\]
4. **Calculate \( \frac{1}{6} + \frac{2}{3} \)**:
- LCM of 6 and 3 is 6.
\[
\frac{1}{6} + \frac{4}{6} = \frac{5}{6}
\]
5. **Calculate \( \frac{7}{10} - \frac{2}{5} \)**:
- LCM of 10 and 5 is 10.
\[
\frac{7}{10} - \frac{4}{10} = \frac{3}{10}
\]
6. **Calculate \( \frac{2}{5} + \frac{3}{4} \)**:
- LCM of 5 and 4 is 20.
\[
\frac{8}{20} + \frac{15}{20} = \frac{23}{20} = 1 \frac{3}{20}
\]
7. **Calculate \( \frac{1}{2} - \frac{3}{7} \)**:
- LCM of 2 and 7 is 14.
\[
\frac{7}{14} - \frac{6}{14} = \frac{1}{14}
\]
8. **Calculate \( \frac{1}{6} + \frac{1}{5} \)**:
- LCM of 6 and 5 is 30.
\[
\frac{5}{30} + \frac{6}{30} = \frac{11}{30}
\]
### Summary of Results
**Mixed Numbers to Improper Fractions:**
- \( 4 \frac{2}{3} = \frac{14}{3} \)
- \( 1 \frac{1}{9} = \frac{10}{9} \)
- \( 3 \frac{6}{7} = \frac{27}{7} \)
- \( 2 \frac{14}{15} = \frac{44}{15} \)
- \( 5 \frac{3}{15} = \frac{78}{15} \)
- \( 10 \frac{7}{8} = \frac{87}{8} \)
**Improper Fractions to Mixed Numbers:**
- \( \frac{14}{5} = 2 \frac{4}{5} \)
- \( \frac{7}{2} = 3 \frac{1}{2} \)
- \( \frac{
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution