Question
upstudy study bank question image url

a) \( 4 \frac{2}{3} \) b) \( 1 \frac{1}{9} \) C) \( 3 \frac{6}{7} \) d) \( 2 \frac{14}{15} \) e) \( 5 \frac{3}{15} \) f) \( 10 \frac{7}{8} \) 3. Convert these improper fractions to mixed numbers: a) \( \frac{14}{5} \) b) \( \frac{7}{2} \) C) \( \frac{21}{4} \) d) \( \frac{36}{7} \) e) \( \frac{19}{8} \) f) \( \frac{9}{5} \) 4. Add or subtract these fractions. Write your answer in simplest form, and as mixed number: where appropriate: c) \( \frac{4}{5}-\frac{1}{3} \) a) \( \frac{1}{5}+\frac{3}{5} \) b) \( \frac{5}{9}+\frac{4}{9} \) d) \( \frac{1}{6}+\frac{2}{3} \) e) \( \frac{7}{10}-\frac{2}{5} \) f) \( \frac{2}{5}+\frac{3}{4} \) g) \( \frac{1}{2}-\frac{3}{7} \) h) \( \frac{1}{6}+\frac{1}{5} \) (LCM) of the denominators. Spot On Mathematics Grade 8

Ask by Parsons Lyons. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**Mixed Numbers to Improper Fractions:** - \( 4 \frac{2}{3} = \frac{14}{3} \) - \( 1 \frac{1}{9} = \frac{10}{9} \) - \( 3 \frac{6}{7} = \frac{27}{7} \) - \( 2 \frac{14}{15} = \frac{44}{15} \) - \( 5 \frac{3}{15} = \frac{78}{15} \) - \( 10 \frac{7}{8} = \frac{87}{8} \) **Improper Fractions to Mixed Numbers:** - \( \frac{14}{5} = 2 \frac{4}{5} \) - \( \frac{7}{2} = 3 \frac{1}{2} \) - \( \frac{21}{4} = 5 \frac{1}{4} \) - \( \frac{36}{7} = 5 \frac{1}{7} \) - \( \frac{19}{8} = 2 \frac{3}{8} \) - \( \frac{9}{5} = 1 \frac{4}{5} \) **Addition and Subtraction of Fractions:** 1. \( \frac{4}{5} - \frac{1}{3} = \frac{7}{15} \) 2. \( \frac{1}{5} + \frac{3}{5} = \frac{4}{5} \) 3. \( \frac{5}{9} + \frac{4}{9} = 1 \) 4. \( \frac{1}{6} + \frac{2}{3} = \frac{5}{6} \) 5. \( \frac{7}{10} - \frac{2}{5} = \frac{3}{10} \) 6. \( \frac{2}{5} + \frac{3}{4} = 1 \frac{3}{20} \) 7. \( \frac{1}{2} - \frac{3}{7} = \frac{1}{14} \) 8. \( \frac{1}{6} + \frac{1}{5} = \frac{11}{30} \)

Solution

Let's break down the problem step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions 1. **Convert \( 4 \frac{2}{3} \)**: \[ 4 \frac{2}{3} = 4 \times 3 + 2 = 12 + 2 = \frac{14}{3} \] 2. **Convert \( 1 \frac{1}{9} \)**: \[ 1 \frac{1}{9} = 1 \times 9 + 1 = 9 + 1 = \frac{10}{9} \] 3. **Convert \( 3 \frac{6}{7} \)**: \[ 3 \frac{6}{7} = 3 \times 7 + 6 = 21 + 6 = \frac{27}{7} \] 4. **Convert \( 2 \frac{14}{15} \)**: \[ 2 \frac{14}{15} = 2 \times 15 + 14 = 30 + 14 = \frac{44}{15} \] 5. **Convert \( 5 \frac{3}{15} \)**: \[ 5 \frac{3}{15} = 5 \times 15 + 3 = 75 + 3 = \frac{78}{15} \] 6. **Convert \( 10 \frac{7}{8} \)**: \[ 10 \frac{7}{8} = 10 \times 8 + 7 = 80 + 7 = \frac{87}{8} \] ### Step 2: Convert Improper Fractions to Mixed Numbers 1. **Convert \( \frac{14}{5} \)**: \[ 14 \div 5 = 2 \quad \text{(remainder 4)} \quad \Rightarrow \quad 2 \frac{4}{5} \] 2. **Convert \( \frac{7}{2} \)**: \[ 7 \div 2 = 3 \quad \text{(remainder 1)} \quad \Rightarrow \quad 3 \frac{1}{2} \] 3. **Convert \( \frac{21}{4} \)**: \[ 21 \div 4 = 5 \quad \text{(remainder 1)} \quad \Rightarrow \quad 5 \frac{1}{4} \] 4. **Convert \( \frac{36}{7} \)**: \[ 36 \div 7 = 5 \quad \text{(remainder 1)} \quad \Rightarrow \quad 5 \frac{1}{7} \] 5. **Convert \( \frac{19}{8} \)**: \[ 19 \div 8 = 2 \quad \text{(remainder 3)} \quad \Rightarrow \quad 2 \frac{3}{8} \] 6. **Convert \( \frac{9}{5} \)**: \[ 9 \div 5 = 1 \quad \text{(remainder 4)} \quad \Rightarrow \quad 1 \frac{4}{5} \] ### Step 3: Add or Subtract the Fractions 1. **Calculate \( \frac{4}{5} - \frac{1}{3} \)**: - LCM of 5 and 3 is 15. \[ \frac{4}{5} = \frac{12}{15}, \quad \frac{1}{3} = \frac{5}{15} \quad \Rightarrow \quad \frac{12}{15} - \frac{5}{15} = \frac{7}{15} \] 2. **Calculate \( \frac{1}{5} + \frac{3}{5} \)**: \[ \frac{1}{5} + \frac{3}{5} = \frac{4}{5} \] 3. **Calculate \( \frac{5}{9} + \frac{4}{9} \)**: \[ \frac{5}{9} + \frac{4}{9} = \frac{9}{9} = 1 \] 4. **Calculate \( \frac{1}{6} + \frac{2}{3} \)**: - LCM of 6 and 3 is 6. \[ \frac{1}{6} + \frac{4}{6} = \frac{5}{6} \] 5. **Calculate \( \frac{7}{10} - \frac{2}{5} \)**: - LCM of 10 and 5 is 10. \[ \frac{7}{10} - \frac{4}{10} = \frac{3}{10} \] 6. **Calculate \( \frac{2}{5} + \frac{3}{4} \)**: - LCM of 5 and 4 is 20. \[ \frac{8}{20} + \frac{15}{20} = \frac{23}{20} = 1 \frac{3}{20} \] 7. **Calculate \( \frac{1}{2} - \frac{3}{7} \)**: - LCM of 2 and 7 is 14. \[ \frac{7}{14} - \frac{6}{14} = \frac{1}{14} \] 8. **Calculate \( \frac{1}{6} + \frac{1}{5} \)**: - LCM of 6 and 5 is 30. \[ \frac{5}{30} + \frac{6}{30} = \frac{11}{30} \] ### Summary of Results **Mixed Numbers to Improper Fractions:** - \( 4 \frac{2}{3} = \frac{14}{3} \) - \( 1 \frac{1}{9} = \frac{10}{9} \) - \( 3 \frac{6}{7} = \frac{27}{7} \) - \( 2 \frac{14}{15} = \frac{44}{15} \) - \( 5 \frac{3}{15} = \frac{78}{15} \) - \( 10 \frac{7}{8} = \frac{87}{8} \) **Improper Fractions to Mixed Numbers:** - \( \frac{14}{5} = 2 \frac{4}{5} \) - \( \frac{7}{2} = 3 \frac{1}{2} \) - \( \frac{

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Let’s take a trip through the wonderful world of fractions! Did you know that mixed numbers, like \( 4 \frac{2}{3} \), actually tell a little story? They combine whole numbers with fractional parts, capturing moments that are not just whole but deliciously fractional too! Those ancient mathematicians knew the importance of clearly conveying quantities, so they devised mixed numbers to express both whole pieces of pie and delightful leftovers! Now, onto the real-world magic of fractions! Have you ever baked a cake? Fractions are your best friends in the kitchen! When a recipe calls for \( 3 \frac{4}{5} \) cups of flour, you’re using mixed numbers to measure out your ingredients perfectly. From dividing pizzas to sharing candies, fractions help us understand and share everything equally. So next time you're cooking, embrace those fractions in style!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy