Question
upstudy study bank question image url

2. Determine the second derivative \( \frac{d^{\wedge} 2 y}{d x^{\wedge} 2} \) of \( \sec 2 \mathrm{x} \). ( 10 marks)

Ask by Cummings Schwartz. in Kenya
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The second derivative of \( y = \sec(2x) \) is \( \frac{d^2y}{dx^2} = 4 \sec(2x)[2 \sec^2(2x) - 1] \) or \( 8 \sec^3(2x) - 4 \sec(2x) \).

Solution

We are given the function   y = sec(2x). Step 1. Find the first derivative (dy/dx). Recall that the derivative of sec(u) with respect to x is sec(u)tan(u) · (du/dx). Here u = 2x, so du/dx = 2. Thus,   dy/dx = d/dx [sec(2x)] = sec(2x)tan(2x) · 2 = 2 sec(2x)tan(2x). Step 2. Find the second derivative (d²y/dx²). Differentiate dy/dx = 2 sec(2x)tan(2x) with respect to x. Use the product rule:   d/dx [uv] = u'v + uv' Let   u(x) = sec(2x)  and  v(x) = tan(2x). First, compute u'(x):   u'(x) = d/dx [sec(2x)] = 2 sec(2x)tan(2x). Next, compute v'(x):   v'(x) = d/dx [tan(2x)] = 2 sec²(2x). Now, applying the product rule:   d/dx [sec(2x)·tan(2x)] = u'·v + u·v'                 = [2 sec(2x)tan(2x)]·tan(2x) + sec(2x)·[2 sec²(2x)]                 = 2 sec(2x)tan²(2x) + 2 sec(2x)sec²(2x)                 = 2 sec(2x)[tan²(2x) + sec²(2x)]. Now remember the factor 2 from the original derivative:   d²y/dx² = 2 × {2 sec(2x)[tan²(2x) + sec²(2x)]}        = 4 sec(2x)[tan²(2x) + sec²(2x)]. Step 3. Optional Simplification We can simplify further by recalling the trigonometric identity:   tan²(θ) = sec²(θ) − 1. In our case (θ = 2x):   tan²(2x) = sec²(2x) − 1. Substitute this into the expression:   tan²(2x) + sec²(2x) = (sec²(2x) − 1) + sec²(2x)                  = 2 sec²(2x) − 1. Thus, the second derivative becomes:   d²y/dx² = 4 sec(2x)[2 sec²(2x) − 1]. Alternatively, we can expand this as:   d²y/dx² = 8 sec³(2x) − 4 sec(2x). Final Answer The second derivative of y = sec(2x) is   d²y/dx² = 4 sec(2x)[tan²(2x) + sec²(2x)]       = 4 sec(2x)[2 sec²(2x) − 1]  or  8 sec³(2x) − 4 sec(2x).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To determine the second derivative of \( y = \sec(2x) \), we first need to find the first derivative. 1. **First Derivative**: Using the chain rule, the derivative of \( \sec(u) \) is \( \sec(u) \tan(u) \frac{du}{dx} \). Here, \( u = 2x \), so: \[ \frac{dy}{dx} = \sec(2x) \tan(2x) \cdot 2 = 2 \sec(2x) \tan(2x) \] 2. **Second Derivative**: Next, we will differentiate \( \frac{dy}{dx} = 2 \sec(2x) \tan(2x) \) again using the product rule. Let \( u = \sec(2x) \) and \( v = \tan(2x) \): \[ \frac{d^2y}{dx^2} = 2 \left( \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx} \right) \] Now we need to compute \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - **Calculating \( \frac{du}{dx} \)**: \[ \frac{du}{dx} = 2 \sec(2x) \tan(2x) \] - **Calculating \( \frac{dv}{dx} \)**: \[ \frac{dv}{dx} = 2 \sec^2(2x) \] Now substituting back: \[ \frac{d^2y}{dx^2} = 2 \left( (2 \sec(2x) \tan(2x)) \tan(2x) + \sec(2x) (2 \sec^2(2x)) \right) \] \[ = 4 \sec(2x) \tan^2(2x) + 4 \sec^3(2x) \] Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = 4 \sec(2x) \tan^2(2x) + 4 \sec^3(2x) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy