Question
upstudy study bank question image url

5. En cada uno de los siguientes vectores, determine; norma o longitud, y vectores unitarios. a. \( v=-2 i-3 j-k \) b. \( u=2 i+5 j-7 k \) c. \( u=i+2 k \)

Ask by Chandler Klein. in Colombia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) Para \( v = -2\, \text{i} - 3\, \text{j} - \text{k} \): - Norma: \( \sqrt{14} \) - Vector unitario: \( \left( -\frac{2}{\sqrt{14}} \right) \, \text{i} + \left( -\frac{3}{\sqrt{14}} \right) \, \text{j} + \left( -\frac{1}{\sqrt{14}} \right) \, \text{k} \) b) Para \( u = 2\, \text{i} + 5\, \text{j} - 7\, \text{k} \): - Norma: \( \sqrt{78} \) - Vector unitario: \( \left( \frac{2}{\sqrt{78}} \right) \, \text{i} + \left( \frac{5}{\sqrt{78}} \right) \, \text{j} + \left( -\frac{7}{\sqrt{78}} \right) \, \text{k} \) c) Para \( u = \text{i} + 2\, \text{k} \): - Norma: \( \sqrt{5} \) - Vector unitario: \( \left( \frac{1}{\sqrt{5}} \right) \, \text{i} + 0\, \text{j} + \left( \frac{2}{\sqrt{5}} \right) \, \text{k} \)

Solution

Para hallar la norma (o longitud) de un vector v = a i + b j + c k se utiliza la fórmula   ||v|| = √(a² + b² + c²) y el vector unitario correspondiente es   u = (1/||v||) · v = (a/||v||) i + (b/||v||) j + (c/||v||) k. Procedemos a calcular para cada uno de los vectores: ────────────────────────────── a) v = –2 i – 3 j – k 1. Calcular la norma:   ||v|| = √((-2)² + (-3)² + (-1)²)      = √(4 + 9 + 1)      = √14 2. Calcular el vector unitario:   u_v = (1/√14) · (–2 i – 3 j – k)     = (–2/√14) i + (–3/√14) j + (–1/√14) k ────────────────────────────── b) u = 2 i + 5 j – 7 k 1. Calcular la norma:   ||u|| = √(2² + 5² + (–7)²)      = √(4 + 25 + 49)      = √78 2. Calcular el vector unitario:   u_u = (1/√78) · (2 i + 5 j – 7 k)     = (2/√78) i + (5/√78) j + (–7/√78) k ────────────────────────────── c) u = i + 2 k     (nótese que la componente j es 0) 1. Calcular la norma:   ||u|| = √(1² + 0² + 2²)      = √(1 + 0 + 4)      = √5 2. Calcular el vector unitario:   u_u = (1/√5) · (i + 2 k)     = (1/√5) i + 0 j + (2/√5) k ────────────────────────────── Respuesta final: a) Para v = –2 i – 3 j – k:   Norma: ||v|| = √14   Vector unitario: (–2/√14) i + (–3/√14) j + (–1/√14) k b) Para u = 2 i + 5 j – 7 k:   Norma: ||u|| = √78   Vector unitario: (2/√78) i + (5/√78) j + (–7/√78) k c) Para u = i + 2 k:   Norma: ||u|| = √5   Vector unitario: (1/√5) i + (2/√5) k Estos son los resultados solicitados.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Para el vector \( v = -2 i - 3 j - k \), la norma se calcula como \( ||v|| = \sqrt{(-2)^2 + (-3)^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \). El vector unitario se obtiene dividiendo \( v \) por su norma: \( \hat{v} = \frac{v}{||v||} = \left(-\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, -\frac{1}{\sqrt{14}}\right) \). Para el vector \( u = 2 i + 5 j - 7 k \), la norma es \( ||u|| = \sqrt{(2)^2 + (5)^2 + (-7)^2} = \sqrt{4 + 25 + 49} = \sqrt{78} \). El vector unitario es \( \hat{u} = \frac{u}{||u||} = \left(\frac{2}{\sqrt{78}}, \frac{5}{\sqrt{78}}, -\frac{7}{\sqrt{78}}\right) \). Finalmente, para el vector \( u = i + 2 k \), la norma se calcula como \( ||u|| = \sqrt{(1)^2 + (0)^2 + (2)^2} = \sqrt{1 + 0 + 4} = \sqrt{5} \). El vector unitario es \( \hat{u} = \frac{u}{||u||} = \left(\frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}}\right) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy