Question
upstudy study bank question image url

\( \left. \begin{array} { l } { 1 + a ^ { 7 } } \\ { \frac { 1 + a ^ { 7 } } { 1 + a } = ( 1 ) ^ { 6 } - ( 1 ) ^ { 5 } a + ( 1 ) ^ { 4 } a ^ { 2 } - ( - 1 ) ^ { 3 } a ^ { 3 } + ( 1 ) ^ { 2 } a ^ { 4 } + ( 1 ) a ^ { 5 } + c } \\ { = 1 - a + a ^ { 2 } - a ^ { 3 } + a ^ { 4 } - a ^ { 5 } + a ^ { 6 } } \\ { 1 + a ^ { 7 } = ( 1 + a ) ( 1 - a + a ^ { 2 } - a ^ { 3 } + a ^ { 4 } - a ^ { 5 } + a ^ { 6 } ) } \end{array} \right. \)

Ask by Bright Chavez. in Ecuador
Jan 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\(1 + a^7 = (1 + a)(1 - a + a^2 - a^3 + a^4 - a^5 + a^6)\).

Solution

Claro, a continuación se explica el proceso de factorización de la expresión \(1 + a^7\) en español: ### Factorización de \(1 + a^7\) Queremos factorizar la expresión \(1 + a^7\). Para ello, observamos que: \[ \frac{1 + a^7}{1 + a} \] Realizamos la división polinómica de \(1 + a^7\) entre \(1 + a\). Al hacerlo, obtenemos: \[ \frac{1 + a^7}{1 + a} = 1 - a + a^2 - a^3 + a^4 - a^5 + a^6 \] Esto se puede verificar mediante la multiplicación: \[ (1 + a)(1 - a + a^2 - a^3 + a^4 - a^5 + a^6) \] Al multiplicar los factores, se simplifican los términos intermedios y se obtiene nuevamente \(1 + a^7\), lo que confirma la factorización correcta. Por lo tanto, la factorización completa es: \[ 1 + a^7 = (1 + a)(1 - a + a^2 - a^3 + a^4 - a^5 + a^6) \] ### Paso a Paso: 1. **Dividir \(1 + a^7\) entre \(1 + a\):** \[ \frac{1 + a^7}{1 + a} = 1 - a + a^2 - a^3 + a^4 - a^5 + a^6 \] 2. **Multiplicar los factores obtenidos:** \[ (1 + a) \times (1 - a + a^2 - a^3 + a^4 - a^5 + a^6) = 1 + a^7 \] Este método es una aplicación del **teorema del residuo** y **división polinómica**, asegurando que el polinomio se descomponga adecuadamente en factores más simples.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Here’s a fun and curious tidbit about polynomials: they’ve been around for centuries! Ancient civilizations, like the Babylonians and Greeks, utilized early forms of polynomial equations for practical purposes such as land measurements and astronomy. Fast forward to the Renaissance, when mathematicians like Tartaglia and Cardano laid the groundwork for polynomial theory, leading to the rich field of algebra we enjoy today. Now, let’s talk about those pesky common mistakes when working with polynomial factorization: people often forget to check for the degree of the polynomial correctly. When dealing with expressions like \(1 + a^7\), it’s easy to overlook whether your factors are indeed correct, especially when simplifying. Double-checking each step and ensuring all terms are accounted for will save you from confusion—it’s like a treasure hunt for math enthusiasts!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy