Answer
(a) Monthly payment for the credit union: \$1,292.48
(b) Monthly payment for the savings and loan association: \$1,200.88
(c) The credit union's loan has a lower total amount to pay off by \$4,617.25 compared to the savings and loan association.
Solution
To solve this problem, we will use the formula for the monthly payment \( M \) on an amortized loan, which is given by:
\[
M = P \frac{r(1 + r)^n}{(1 + r)^n - 1}
\]
where:
- \( P \) is the loan amount (principal),
- \( r \) is the monthly interest rate (annual interest rate divided by 12),
- \( n \) is the total number of payments (loan term in months).
### Part (a): Monthly Payment for the Credit Union Loan
1. **Extract known values:**
- \( P = 84000 \)
- Annual interest rate = \( 10.4\% \) → Monthly interest rate \( r = \frac{10.4\%}{12} = \frac{0.104}{12} \)
- Loan term = 8 years → Total payments \( n = 8 \times 12 \)
2. **Calculate \( r \) and \( n \):**
\[
r = \frac{0.104}{12} = 0.00866667
\]
\[
n = 8 \times 12 = 96
\]
3. **Substitute into the formula:**
\[
M = 84000 \frac{0.00866667(1 + 0.00866667)^{96}}{(1 + 0.00866667)^{96} - 1}
\]
Now, let's calculate the monthly payment \( M \) for the credit union loan.
### Part (b): Monthly Payment for the Savings and Loan Association Loan
1. **Extract known values:**
- Loan term = 9 years → Total payments \( n = 9 \times 12 \)
2. **Calculate \( n \):**
\[
n = 9 \times 12 = 108
\]
3. **Substitute into the formula:**
\[
M = 84000 \frac{0.00866667(1 + 0.00866667)^{108}}{(1 + 0.00866667)^{108} - 1}
\]
Now, let's calculate both monthly payments and the total amounts paid for each loan.
### Part (c): Total Amount Paid Comparison
1. **Total amount paid for each loan:**
- Total amount for credit union = \( M_{CU} \times 96 \)
- Total amount for savings and loan = \( M_{SLA} \times 108 \)
Let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{84000\left(0.00866667\left(1+0.00866667\right)^{108}\right)}{\left(\left(1+0.00866667\right)^{108}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{84000\times 0.00866667\left(1+0.00866667\right)^{108}}{\left(1+0.00866667\right)^{108}-1}\)
- step2: Add the numbers:
\(\frac{84000\times 0.00866667\times 1.00866667^{108}}{\left(1+0.00866667\right)^{108}-1}\)
- step3: Add the numbers:
\(\frac{84000\times 0.00866667\times 1.00866667^{108}}{1.00866667^{108}-1}\)
- step4: Convert the expressions:
\(\frac{84000\times 0.00866667\left(\frac{100866667}{100000000}\right)^{108}}{1.00866667^{108}-1}\)
- step5: Convert the expressions:
\(\frac{84000\times 0.00866667\left(\frac{100866667}{100000000}\right)^{108}}{\left(\frac{100866667}{100000000}\right)^{108}-1}\)
- step6: Multiply:
\(\frac{\frac{18200007\times 100866667^{108}}{25000\times 100000000^{108}}}{\left(\frac{100866667}{100000000}\right)^{108}-1}\)
- step7: Subtract the numbers:
\(\frac{\frac{18200007\times 100866667^{108}}{25000\times 100000000^{108}}}{\frac{100866667^{108}-100000000^{108}}{100000000^{108}}}\)
- step8: Multiply by the reciprocal:
\(\frac{18200007\times 100866667^{108}}{25000\times 100000000^{108}}\times \frac{100000000^{108}}{100866667^{108}-100000000^{108}}\)
- step9: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{25000\times 100000000^{108}}\times \frac{25000^{108}\times 4000^{108}}{100866667^{108}-100000000^{108}}\)
- step10: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{100000000^{108}}\times \frac{25000^{107}\times 4000^{108}}{100866667^{108}-100000000^{108}}\)
- step11: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{25000^{108}\times 4000^{108}}\times \frac{25000^{107}\times 4000^{108}}{100866667^{108}-100000000^{108}}\)
- step12: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{25000\times 4000^{108}}\times \frac{4000^{108}}{100866667^{108}-100000000^{108}}\)
- step13: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{25000\times 4000^{108}}\times \frac{1000^{108}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step14: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{1000\times 25\times 4000^{108}}\times \frac{1000^{108}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step15: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{25\times 4000^{108}}\times \frac{1000^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step16: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{25\times 4000^{108}}\times \frac{125^{107}\times 8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step17: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{5^{2}\times 4000^{108}}\times \frac{5^{321}\times 8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step18: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{4000^{108}}\times \frac{5^{319}\times 8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step19: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{125^{108}\times 32^{108}}\times \frac{5^{319}\times 8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step20: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{5^{324}\times 32^{108}}\times \frac{5^{319}\times 8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step21: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{5^{5}\times 32^{108}}\times \frac{8^{107}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step22: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{5^{5}\times 2^{540}}\times \frac{2^{321}\times 4^{108}}{100866667^{108}-100000000^{108}}\)
- step23: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{5^{5}\times 2^{219}}\times \frac{4^{108}}{100866667^{108}-100000000^{108}}\)
- step24: Rewrite the expression:
\(\frac{18200007\times 100866667^{108}}{5^{5}\times 2^{219}}\times \frac{2^{216}}{100866667^{108}-100000000^{108}}\)
- step25: Reduce the numbers:
\(\frac{18200007\times 100866667^{108}}{5^{5}\times 2^{3}}\times \frac{1}{100866667^{108}-100000000^{108}}\)
- step26: Multiply the fractions:
\(\frac{18200007\times 100866667^{108}}{25000\left(100866667^{108}-100000000^{108}\right)}\)
- step27: Multiply:
\(\frac{18200007\times 100866667^{108}}{25000\times 100866667^{108}-25000\times 100000000^{108}}\)
Calculate or simplify the expression \( 84000 * (0.00866667 * (1 + 0.00866667)^96) / ((1 + 0.00866667)^96 - 1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{84000\left(0.00866667\left(1+0.00866667\right)^{96}\right)}{\left(\left(1+0.00866667\right)^{96}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{84000\times 0.00866667\left(1+0.00866667\right)^{96}}{\left(1+0.00866667\right)^{96}-1}\)
- step2: Add the numbers:
\(\frac{84000\times 0.00866667\times 1.00866667^{96}}{\left(1+0.00866667\right)^{96}-1}\)
- step3: Add the numbers:
\(\frac{84000\times 0.00866667\times 1.00866667^{96}}{1.00866667^{96}-1}\)
- step4: Convert the expressions:
\(\frac{84000\times 0.00866667\left(\frac{100866667}{100000000}\right)^{96}}{1.00866667^{96}-1}\)
- step5: Convert the expressions:
\(\frac{84000\times 0.00866667\left(\frac{100866667}{100000000}\right)^{96}}{\left(\frac{100866667}{100000000}\right)^{96}-1}\)
- step6: Multiply:
\(\frac{\frac{18200007\times 100866667^{96}}{25000\times 100000000^{96}}}{\left(\frac{100866667}{100000000}\right)^{96}-1}\)
- step7: Subtract the numbers:
\(\frac{\frac{18200007\times 100866667^{96}}{25000\times 100000000^{96}}}{\frac{100866667^{96}-100000000^{96}}{100000000^{96}}}\)
- step8: Multiply by the reciprocal:
\(\frac{18200007\times 100866667^{96}}{25000\times 100000000^{96}}\times \frac{100000000^{96}}{100866667^{96}-100000000^{96}}\)
- step9: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{25000\times 100000000^{96}}\times \frac{25000^{96}\times 4000^{96}}{100866667^{96}-100000000^{96}}\)
- step10: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{100000000^{96}}\times \frac{25000^{95}\times 4000^{96}}{100866667^{96}-100000000^{96}}\)
- step11: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{25000^{96}\times 4000^{96}}\times \frac{25000^{95}\times 4000^{96}}{100866667^{96}-100000000^{96}}\)
- step12: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{25000\times 4000^{96}}\times \frac{4000^{96}}{100866667^{96}-100000000^{96}}\)
- step13: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{25000\times 4000^{96}}\times \frac{1000^{96}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step14: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{1000\times 25\times 4000^{96}}\times \frac{1000^{96}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step15: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{25\times 4000^{96}}\times \frac{1000^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step16: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{25\times 4000^{96}}\times \frac{125^{95}\times 8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step17: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{5^{2}\times 4000^{96}}\times \frac{5^{285}\times 8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step18: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{4000^{96}}\times \frac{5^{283}\times 8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step19: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{125^{96}\times 32^{96}}\times \frac{5^{283}\times 8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step20: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{5^{288}\times 32^{96}}\times \frac{5^{283}\times 8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step21: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{5^{5}\times 32^{96}}\times \frac{8^{95}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step22: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{5^{5}\times 2^{480}}\times \frac{2^{285}\times 4^{96}}{100866667^{96}-100000000^{96}}\)
- step23: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{5^{5}\times 2^{195}}\times \frac{4^{96}}{100866667^{96}-100000000^{96}}\)
- step24: Rewrite the expression:
\(\frac{18200007\times 100866667^{96}}{5^{5}\times 2^{195}}\times \frac{2^{192}}{100866667^{96}-100000000^{96}}\)
- step25: Reduce the numbers:
\(\frac{18200007\times 100866667^{96}}{5^{5}\times 2^{3}}\times \frac{1}{100866667^{96}-100000000^{96}}\)
- step26: Multiply the fractions:
\(\frac{18200007\times 100866667^{96}}{25000\left(100866667^{96}-100000000^{96}\right)}\)
- step27: Multiply:
\(\frac{18200007\times 100866667^{96}}{25000\times 100866667^{96}-25000\times 100000000^{96}}\)
Calculate or simplify the expression \( 1200.880933 * 108 \).
Calculate the value by following steps:
- step0: Calculate:
\(1200.880933\times 108\)
- step1: Multiply the numbers:
\(129695.140764\)
Calculate or simplify the expression \( 1292.47799 * 96 \).
Calculate the value by following steps:
- step0: Calculate:
\(1292.47799\times 96\)
- step1: Multiply the numbers:
\(124077.88704\)
### Part (a): Monthly Payment for the Credit Union Loan
The monthly payment for the credit union loan is approximately:
\[
M_{CU} \approx 1292.48
\]
### Part (b): Monthly Payment for the Savings and Loan Association Loan
The monthly payment for the savings and loan association loan is approximately:
\[
M_{SLA} \approx 1200.88
\]
### Part (c): Total Amount Paid Comparison
1. **Total amount paid for the credit union loan:**
\[
\text{Total}_{CU} = M_{CU} \times 96 \approx 1292.48 \times 96 \approx 124077.89
\]
2. **Total amount paid for the savings and loan association loan:**
\[
\text{Total}_{SLA} = M_{SLA} \times 108 \approx 1200.88 \times 108 \approx 129695.14
\]
### Conclusion
- The credit union's total amount paid would be approximately \( \$ 124077.89 \).
- The savings and loan association's total amount paid would be approximately \( \$ 129695.14 \).
Thus, the credit union's small business loan would have the lowest total amount to pay off, and the difference is:
\[
\text{Difference} = 129695.14 - 124077.89 \approx 4617.25
\]
### Final Answers
- (a) Monthly payment for the credit union: \( \$ 1292.48 \)
- (b) Monthly payment for the savings and loan association: \( \$ 1200.88 \)
- (c) The credit union's total amount paid would be \( \$ 4617.25 \) less than to the savings and loan association.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution