Question
upstudy study bank question image url

Given the following functions, find each: \( f(x)=x^{2}+3 x-28 \) \( g(x)=x+7 \) \( (f+g)(x)=x^{2}+4 x-21 \) \( (f-g)(x)=x^{2}+2 x-35 \) \( (f \cdot g)(x)=x^{3}+10 x^{2}-7 x-196 \) \( \left(\frac{f}{g}\right)(x)= \)

Ask by Barker Griffiths. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(f/g)(x) = x – 4, for x ≠ –7

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

To find \( \left(\frac{f}{g}\right)(x) \), we start by substituting the expressions for \( f(x) \) and \( g(x) \): \[ f(x) = x^2 + 3x - 28 \] \[ g(x) = x + 7 \] Now, we can express \( \left(\frac{f}{g}\right)(x) \) as: \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^2 + 3x - 28}{x + 7} \] Next, we can simplify this fraction by performing polynomial long division or factoring the numerator if possible. Factoring \( f(x) \): To factor \( x^2 + 3x - 28 \), we look for two numbers that multiply to \(-28\) and add to \(3\). Those numbers are \(7\) and \(-4\). So, we can write: \[ x^2 + 3x - 28 = (x + 7)(x - 4) \] This allows us to rewrite the expression as: \[ \frac{(x + 7)(x - 4)}{x + 7} \] Now, we can cancel \( x + 7 \) from the numerator and the denominator (as long as \( x \neq -7 \)): \[ \left(\frac{f}{g}\right)(x) = x - 4 \quad (x \neq -7) \] Thus, the final result is: \[ \left(\frac{f}{g}\right)(x) = x - 4 \quad \text{for } x \neq -7 \]

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy