Question
upstudy study bank question image url

Simplify each expression. Write your answer using a negative exponent. \( \begin{array}{ll}\text { i) } 7^{-12} \cdot 7^{5}=\square & \text { iii) } \frac{3^{4}}{3^{6}}=\square \\ \text { ii) } 10^{-10} \cdot 10^{5}=\square\end{array} \)

Ask by Wood Potter. in the United Kingdom
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

i) \( 7^{-7} \) ii) \( 10^{-5} \) iii) \( 3^{-2} \)

Solution

To simplify expressions with exponential rules, add or subtract exponents as follows: i) 7^(-12) · 7^(5) = 7^(-12 + 5) = 7^(-7) ii) 10^(-10) · 10^(5) = 10^(-10 + 5) = 10^(-5) iii) (3^(4))/(3^(6)) = 3^(4 - 6) = 3^(-2) Thus, the simplified answers using negative exponents are: i) 7^(-7) ii) 10^(-5) iii) 3^(-2)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify each expression step by step! i) For \( 7^{-12} \cdot 7^{5} \), we can use the property of exponents that states \( a^m \cdot a^n = a^{m+n} \). Thus: \[ 7^{-12} \cdot 7^{5} = 7^{-12 + 5} = 7^{-7} \] ii) Similarly, for \( 10^{-10} \cdot 10^{5} \): \[ 10^{-10} \cdot 10^{5} = 10^{-10 + 5} = 10^{-5} \] iii) For \( \frac{3^{4}}{3^{6}} \), we use the exponent rule for division, which is \( \frac{a^m}{a^n} = a^{m-n} \): \[ \frac{3^{4}}{3^{6}} = 3^{4 - 6} = 3^{-2} \] So the answers are: i) \( 7^{-7} \), ii) \( 10^{-5} \), iii) \( 3^{-2} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy