Question

№1. В прямоугольном треугольнике \( \boldsymbol{A B C} \) с прямым углом C проведена высота \( C D \). Найдите величину угла \( A \), если \( D B=8 \), а \( B C=16 \).

Ask by Garrett Newton. in Russia
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Угол A равен 30°.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

Мы знаем, что в прямоугольном треугольнике значения катетов и высоты могут помочь нам найти углы. В данном случае, высота \( C D \) делит треугольник \( A B C \) на два меньших треугольника: \( A C D \) и \( B C D \). По теореме о пропорциональности отрезков: \[ \frac{D B}{B C} = \frac{C D}{A C} = \frac{C D}{D A} \] Так как \( D B = 8 \) и \( B C = 16 \), можно выразить \( C D \): \( D B = 8 \Rightarrow C D = x \) (высота), \( B C = 16 \Rightarrow C A = \sqrt{(B C)^2 - (D B)^2} = \sqrt{16^2 - 8^2} = \sqrt{256 - 64} = \sqrt{192} = 8\sqrt{3} \). Найдём угол \( A \) с помощью тангенса: \[ \tan(A) = \frac{C D}{D B} = \frac{x}{8} \quad (где x – высота C D). \] Зная, что \( C D = 8\sqrt{3}/2 \) и \( DB = 8 \), получаем: \[ \tan(A) = \frac{8 \sqrt{3}/2}{8} = \frac{\sqrt{3}}{2}. \] Следовательно, угол \( A = 60^\circ \). Таким образом, величина угла \( A \) равна \( 60^\circ \).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy