9. \( \sqrt{45}-\sqrt{20}+4 \sqrt{5} \quad 10.2 \sqrt{12}-\sqrt{40}+3 \sqrt{27} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Extra Insights
To simplify \( \sqrt{45}-\sqrt{20}+4 \sqrt{5} \), first, break down the square roots: \(\sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5}\), and \(\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}\). So, we have \(3\sqrt{5} - 2\sqrt{5} + 4\sqrt{5} = (3 - 2 + 4)\sqrt{5} = 5\sqrt{5}\). Next, for \(10.2 \sqrt{12}-\sqrt{40}+3 \sqrt{27}\): \(\sqrt{12} = 2\sqrt{3}\), \(\sqrt{40} = \sqrt{4 \times 10} = 2\sqrt{10}\), and \(\sqrt{27} = 3\sqrt{3}\). So, substituting those values gives us \(10.2(2\sqrt{3}) - 2\sqrt{10} + 3(3\sqrt{3}) = 20.4\sqrt{3} - 2\sqrt{10} + 9\sqrt{3} = (20.4 + 9)\sqrt{3} - 2\sqrt{10} = 29.4\sqrt{3} - 2\sqrt{10}\). Now, both expressions simplified perfectly!