Question
upstudy study bank question image url

(i) \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \)

Ask by Martin Lee. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The equation has no solution.

Solution

Solve the equation \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)=\frac{\tan\left(x\right)}{\sin\left(x\right)}\) - step1: Find the domain: \(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)=\frac{\tan\left(x\right)}{\sin\left(x\right)},x\neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{1}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\frac{\sin\left(x\right)}{\cos\left(x\right)}}{\sin\left(x\right)}\) - step3: Simplify the expression: \(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\frac{\sin\left(x\right)}{\cos\left(x\right)}}{\sin\left(x\right)}\) - step4: Simplify the expression: \(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)\sin\left(x\right)}\) - step5: Reduce the fraction: \(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{1}{\cos\left(x\right)}\) - step6: Multiply both sides of the equation by LCD: \(\left(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)\cos\left(x\right)\sin\left(x\right)=\frac{1}{\cos\left(x\right)}\times \cos\left(x\right)\sin\left(x\right)\) - step7: Simplify the equation: \(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)=\sin\left(x\right)\) - step8: Rewrite the expression: \(1=\sin\left(x\right)\) - step9: Swap the sides: \(\sin\left(x\right)=1\) - step10: Use the inverse trigonometric function: \(x=\arcsin\left(1\right)\) - step11: Calculate: \(x=\frac{\pi }{2}\) - step12: Add the period: \(x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\) - step13: Check if the solution is in the defined range: \(x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z},x\neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step14: Find the intersection: \(x \in \varnothing \) The equation \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \) has no solution.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To tackle the equation \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \), we can first rewrite \(\tan x\) in terms of sine and cosine. Recall that \(\tan x = \frac{\sin x}{\cos x}\), so \(\frac{1}{\tan x} = \frac{\cos x}{\sin x}\). Substituting these into the original equation gives: \[ \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\frac{\sin x}{\cos x}}{\sin x} \] This simplifies to: \[ \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x} \] Using the Pythagorean identity \(\cos^2 x + \sin^2 x = 1\), we can simplify the left-hand side further: \[ \frac{1}{\sin x \cos x} = \frac{1}{\cos x} \] Now, cross-multiplying gives: \[ \cos x = \sin x \] This simplifies to: \[ \tan x = 1 \] Thus, the solutions for \(x\) are: \[ x = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] These are the angles where the tangent function equals 1!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy