Answer
The equation has no solution.
Solution
Solve the equation \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)=\frac{\tan\left(x\right)}{\sin\left(x\right)}\)
- step1: Find the domain:
\(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)=\frac{\tan\left(x\right)}{\sin\left(x\right)},x\neq \frac{k\pi }{2},k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(\frac{1}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\frac{\sin\left(x\right)}{\cos\left(x\right)}}{\sin\left(x\right)}\)
- step3: Simplify the expression:
\(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\frac{\sin\left(x\right)}{\cos\left(x\right)}}{\sin\left(x\right)}\)
- step4: Simplify the expression:
\(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)\sin\left(x\right)}\)
- step5: Reduce the fraction:
\(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{1}{\cos\left(x\right)}\)
- step6: Multiply both sides of the equation by LCD:
\(\left(\frac{\cos\left(x\right)}{\sin\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)\cos\left(x\right)\sin\left(x\right)=\frac{1}{\cos\left(x\right)}\times \cos\left(x\right)\sin\left(x\right)\)
- step7: Simplify the equation:
\(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)=\sin\left(x\right)\)
- step8: Rewrite the expression:
\(1=\sin\left(x\right)\)
- step9: Swap the sides:
\(\sin\left(x\right)=1\)
- step10: Use the inverse trigonometric function:
\(x=\arcsin\left(1\right)\)
- step11: Calculate:
\(x=\frac{\pi }{2}\)
- step12: Add the period:
\(x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\)
- step13: Check if the solution is in the defined range:
\(x=\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z},x\neq \frac{k\pi }{2},k \in \mathbb{Z}\)
- step14: Find the intersection:
\(x \in \varnothing \)
The equation \( \frac{1}{\tan x}+\tan x=\frac{\tan x}{\sin x} \) has no solution.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution