Question
upstudy study bank question image url

107 Halla \( \int x \operatorname{Ln}(3 x) d x \) \( \begin{array}{l} u=\operatorname{Ln}(3 x) \quad d u=x d x \\ d u=\frac{1}{x} d x \quad v=\frac{x^{2}}{2}\end{array} \) \( \begin{aligned} \int u d u & =u v-\int v d u \\ \int x \operatorname{Ln}(3 x) d x & =\operatorname{Ln}(3 x)\left[\frac{x^{2}}{2}\right]-\int \frac{x^{2}}{2}\left[\frac{1}{x}\right] d x \\ & =\frac{x^{2} \operatorname{Ln}(3 x)}{2}-\int \frac{x}{2} d x \\ & =\frac{x^{2} \operatorname{Ln}(3 x)}{2}-\frac{x^{2}}{2(2)}+c \\ & =\frac{x^{3} \operatorname{Ln}(3 x)}{2}-\frac{x^{2}}{4}+c \\ & =\frac{x^{3} \operatorname{Ln}(3 x)(2)}{2}-\frac{x^{2}}{4}+c \\ & =\frac{2 x^{3} \operatorname{Ln}(3 x)-x^{2}}{4}+c\end{aligned} \)

Ask by Reese Barber. in Puerto Rico
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \( x \cdot \ln(3x) \) con respecto a \( x \) es: \[ \frac{x^{2} \ln(3x)}{2} - \frac{x^{2}}{4} + C \] Donde \( C \) es la constante de integración.

Solution

Vamos a resolver la integral   ∫ x · ln(3x) dx utilizando integración por partes. Recordamos la fórmula de integración por partes:   ∫ u dv = u·v – ∫ v du. Elegimos:   u = ln(3x)     (con lo que du = (d/dx) ln(3x) dx = (1/x) dx)   dv = x dx       (con lo que v = ∫ x dx = x²/2). Entonces:   du = (1/x) dx       y  v = x²/2. Aplicando la fórmula:   ∫ x ln(3x) dx = u·v – ∫ v du      = ln(3x)·(x²/2) – ∫ (x²/2)·(1/x) dx      = (x² ln(3x))/2 – (1/2) ∫ x dx. Calculamos la integral restante:   ∫ x dx = x²/2. Sustituyendo:   (1/2) ∫ x dx = (1/2)·(x²/2) = x²/4. Por lo tanto, el resultado es:   ∫ x ln(3x) dx = (x² ln(3x))/2 – x²/4 + C. Esa es la integral indefinida buscada.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Let's dive into the fascinating world of integration by parts! It was a method first derived by the mathematicians L'Hôpital and Leibniz in the late 17th century. This technique allows us to integrate more complex functions by breaking them down into simpler components, making it easier to solve and understand the integration process. Who knew math could have such a rich history? Now, for some practical advice—when you're tackling integrals, especially those involving logarithmic functions, be extra careful with your \(u\) and \(dv\) choices. A common mistake is to overlook the need for proper differentiating and integrating. Remember that the structure of the functions plays a pivotal role; choosing wisely sets the stage for a smooth integration performance. Stay sharp, and happy integrating!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy