Answer
Here are the solutions for each system of equations:
- **(b):** No solution.
- **(c):** \( (-1.6, -7) \) and \( (0.6, 0) \).
- **(d):** \( (0.3, -3) \) and \( (4.5, 9.5) \).
- **(e):** \( (-1, 5) \) and \( (2.5, -0.25) \).
- **(f):** \( (4, -2) \).
- **(g):** \( (-2.5, 11) \) and \( (4, -2) \).
- **(h):** \( (-1, 0) \) and \( (9, 3.3) \).
- **(i):** \( (-1, 0) \) and \( (9, 3.3) \).
These are the points where the equations intersect.
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}-x-3=2x^{2}-3x-3\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=\frac{-6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}-x=2x^{2}-3x\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=\frac{-6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step2: Calculate:
\(\left\{ \begin{array}{l}-x=2x^{2}-3x\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=-\frac{6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step3: Solve the equation:
\(\left\{ \begin{array}{l}x=0\cup x=1\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=-\frac{6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step4: Evaluate:
\(\left\{ \begin{array}{l}x=0\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=-\frac{6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\3x-y=2\\3y+9x^{2}=4\\2y-x=2\\4y-2x^{2}=x-4\\3x=y+4\\y^{2}-xy=9x+7\\2y+3x=7\\y=x^{2}-3x+1\\x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\\y=-\frac{6}{x+2}-1\\y+2x-6=0\\y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step5: Calculate:
\(\textrm{Undefined}\cup \left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step6: Rearrange the terms:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step7: Rewrite:
\((x, y) \in \varnothing\)
Solve the system of equations \( x+2 y=0; y-x y=\frac{1}{2} x^{2}-2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+2y=0\\y-xy=\frac{1}{2}x^{2}-2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-2y\\y-xy=\frac{1}{2}x^{2}-2\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(y-\left(-2y\times y\right)=\frac{1}{2}\left(-2y\right)^{2}-2\)
- step3: Simplify:
\(y+2y^{2}=2y^{2}-2\)
- step4: Cancel equal terms:
\(y=-2\)
- step5: Substitute the value of \(y:\)
\(x=-2\left(-2\right)\)
- step6: Calculate:
\(x=4\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step8: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step9: Rewrite:
\(\left(x,y\right) = \left(4,-2\right)\)
Solve the system of equations \( y=\frac{3}{x}+3; 3 y-x=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\frac{3}{x}+3\\3y-x=1\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(3\left(\frac{3}{x}+3\right)-x=1\)
- step2: Multiply the terms:
\(\frac{9+9x}{x}-x=1\)
- step3: Multiply both sides of the equation by LCD:
\(\left(\frac{9+9x}{x}-x\right)x=1\times x\)
- step4: Simplify the equation:
\(9+9x-x^{2}=x\)
- step5: Move the expression to the left side:
\(9+9x-x^{2}-x=0\)
- step6: Subtract the terms:
\(9+8x-x^{2}=0\)
- step7: Factor the expression:
\(\left(9-x\right)\left(1+x\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&9-x=0\\&1+x=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=9\\&x=-1\end{align}\)
- step10: Calculate:
\(x=9\cup x=-1\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=9\\y=\frac{3}{x}+3\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=\frac{3}{x}+3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=9\\y=\frac{10}{3}\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-1,0\right)\cup \left(x,y\right) = \left(9,\frac{10}{3}\right)\)
Solve the system of equations \( y=\frac{-6}{x+2}-1; y+2 x-6=0 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=\frac{-6}{x+2}-1\\y+2x-6=0\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}y=-\frac{6}{x+2}-1\\y+2x-6=0\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(-\frac{6}{x+2}-1+2x-6=0\)
- step3: Simplify:
\(-\frac{6}{x+2}-7+2x=0\)
- step4: Multiply both sides of the equation by LCD:
\(\left(-\frac{6}{x+2}-7+2x\right)\left(x+2\right)=0\times \left(x+2\right)\)
- step5: Simplify the equation:
\(-20-3x+2x^{2}=0\)
- step6: Factor the expression:
\(\left(-4+x\right)\left(5+2x\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&-4+x=0\\&5+2x=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=4\\&x=-\frac{5}{2}\end{align}\)
- step9: Calculate:
\(x=4\cup x=-\frac{5}{2}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=4\\y=-\frac{6}{x+2}-1\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{2}\\y=-\frac{6}{x+2}-1\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{5}{2}\\y=11\end{array}\right.\cup \left\{ \begin{array}{l}x=4\\y=-2\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-\frac{5}{2},11\right)\cup \left(x,y\right) = \left(4,-2\right)\)
Solve the system of equations \( 3 x=y+4; y^{2}-x y=9 x+7 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x=y+4\\y^{2}-xy=9x+7\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=3x-4\\y^{2}-xy=9x+7\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(\left(3x-4\right)^{2}-x\left(3x-4\right)=9x+7\)
- step3: Simplify:
\(6x^{2}-20x+16=9x+7\)
- step4: Move the expression to the left side:
\(6x^{2}-20x+16-\left(9x+7\right)=0\)
- step5: Calculate:
\(6x^{2}-29x+9=0\)
- step6: Factor the expression:
\(\left(2x-9\right)\left(3x-1\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&2x-9=0\\&3x-1=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=\frac{9}{2}\\&x=\frac{1}{3}\end{align}\)
- step9: Calculate:
\(x=\frac{9}{2}\cup x=\frac{1}{3}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=\frac{9}{2}\\y=3x-4\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1}{3}\\y=3x-4\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=\frac{9}{2}\\y=\frac{19}{2}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1}{3}\\y=-3\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=\frac{1}{3}\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{9}{2}\\y=\frac{19}{2}\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=\frac{1}{3}\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{9}{2}\\y=\frac{19}{2}\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(\frac{1}{3},-3\right)\cup \left(x,y\right) = \left(\frac{9}{2},\frac{19}{2}\right)\)
Solve the system of equations \( 3 x-y=2; 3 y+9 x^{2}=4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x-y=2\\3y+9x^{2}=4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-2+3x\\3y+9x^{2}=4\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(3\left(-2+3x\right)+9x^{2}=4\)
- step3: Expand the expression:
\(-6+9x+9x^{2}=4\)
- step4: Move the expression to the left side:
\(-6+9x+9x^{2}-4=0\)
- step5: Subtract the numbers:
\(-10+9x+9x^{2}=0\)
- step6: Factor the expression:
\(\left(-2+3x\right)\left(5+3x\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&-2+3x=0\\&5+3x=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=\frac{2}{3}\\&x=-\frac{5}{3}\end{align}\)
- step9: Calculate:
\(x=\frac{2}{3}\cup x=-\frac{5}{3}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=\frac{2}{3}\\y=-2+3x\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-2+3x\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-\frac{5}{3},-7\right)\cup \left(x,y\right) = \left(\frac{2}{3},0\right)\)
Solve the system of equations \( 2 y+3 x=7; y=x^{2}-3 x+1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2y+3x=7\\y=x^{2}-3x+1\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(2\left(x^{2}-3x+1\right)+3x=7\)
- step2: Simplify:
\(2x^{2}-3x+2=7\)
- step3: Move the expression to the left side:
\(2x^{2}-3x+2-7=0\)
- step4: Subtract the numbers:
\(2x^{2}-3x-5=0\)
- step5: Factor the expression:
\(\left(x+1\right)\left(2x-5\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x+1=0\\&2x-5=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=-1\\&x=\frac{5}{2}\end{align}\)
- step8: Calculate:
\(x=-1\cup x=\frac{5}{2}\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-1\\y=x^{2}-3x+1\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{5}{2}\\y=x^{2}-3x+1\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{5}{2}\\y=-\frac{1}{4}\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=5\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{5}{2}\\y=-\frac{1}{4}\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-1,5\right)\cup \left(x,y\right) = \left(\frac{5}{2},-\frac{1}{4}\right)\)
Solve the system of equations \( 2 y-x=2; 4 y-2 x^{2}=x-4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2y-x=2\\4y-2x^{2}=x-4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=-2+2y\\4y-2x^{2}=x-4\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(4y-2\left(-2+2y\right)^{2}=-2+2y-4\)
- step3: Simplify:
\(20y-8-8y^{2}=-6+2y\)
- step4: Move the expression to the left side:
\(20y-8-8y^{2}-\left(-6+2y\right)=0\)
- step5: Subtract the terms:
\(18y-2-8y^{2}=0\)
- step6: Rewrite in standard form:
\(-8y^{2}+18y-2=0\)
- step7: Multiply both sides:
\(8y^{2}-18y+2=0\)
- step8: Solve using the quadratic formula:
\(y=\frac{18\pm \sqrt{\left(-18\right)^{2}-4\times 8\times 2}}{2\times 8}\)
- step9: Simplify the expression:
\(y=\frac{18\pm \sqrt{\left(-18\right)^{2}-4\times 8\times 2}}{16}\)
- step10: Simplify the expression:
\(y=\frac{18\pm \sqrt{260}}{16}\)
- step11: Simplify the expression:
\(y=\frac{18\pm 2\sqrt{65}}{16}\)
- step12: Separate into possible cases:
\(\begin{align}&y=\frac{18+2\sqrt{65}}{16}\\&y=\frac{18-2\sqrt{65}}{16}\end{align}\)
- step13: Simplify the expression:
\(\begin{align}&y=\frac{9+\sqrt{65}}{8}\\&y=\frac{18-2\sqrt{65}}{16}\end{align}\)
- step14: Simplify the expression:
\(\begin{align}&y=\frac{9+\sqrt{65}}{8}\\&y=\frac{9-\sqrt{65}}{8}\end{align}\)
- step15: Evaluate the logic:
\(y=\frac{9+\sqrt{65}}{8}\cup y=\frac{9-\sqrt{65}}{8}\)
- step16: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-2+2y\\y=\frac{9+\sqrt{65}}{8}\end{array}\right.\cup \left\{ \begin{array}{l}x=-2+2y\\y=\frac{9-\sqrt{65}}{8}\end{array}\right.\)
- step17: Calculate:
\(\left\{ \begin{array}{l}x=\frac{1+\sqrt{65}}{4}\\y=\frac{9+\sqrt{65}}{8}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1-\sqrt{65}}{4}\\y=\frac{9-\sqrt{65}}{8}\end{array}\right.\)
- step18: Check the solution:
\(\left\{ \begin{array}{l}x=\frac{1+\sqrt{65}}{4}\\y=\frac{9+\sqrt{65}}{8}\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{1-\sqrt{65}}{4}\\y=\frac{9-\sqrt{65}}{8}\end{array}\right.\)
- step19: Rewrite:
\(\left(x,y\right) = \left(\frac{1+\sqrt{65}}{4},\frac{9+\sqrt{65}}{8}\right)\cup \left(x,y\right) = \left(\frac{1-\sqrt{65}}{4},\frac{9-\sqrt{65}}{8}\right)\)
Here are the solutions for each of the systems of equations provided:
### (b)
**Equations:**
1. \( y = -x - 3 \)
2. \( y = 2x^2 - 3x - 3 \)
**Solution:**
The system has no solution, meaning the lines do not intersect.
### (c)
**Equations:**
1. \( 3x - y = 2 \)
2. \( 3y + 9x^2 = 4 \)
**Solution:**
The solutions are:
- \( (x, y) = (-1.6, -7) \)
- \( (x, y) = (0.6, 0) \)
### (d)
**Equations:**
1. \( 2y - x = 2 \)
2. \( 4y - 2x^2 = x - 4 \)
**Solution:**
The solutions are:
- \( (x, y) = (0.3, -3) \)
- \( (x, y) = (4.5, 9.5) \)
### (e)
**Equations:**
1. \( 3x = y + 4 \)
2. \( y^2 - xy = 9x + 7 \)
**Solution:**
The solutions are:
- \( (x, y) = (-1, 5) \)
- \( (x, y) = (2.5, -0.25) \)
### (f)
**Equations:**
1. \( 2y + 3x = 7 \)
2. \( y = x^2 - 3x + 1 \)
**Solution:**
The solution is:
- \( (x, y) = (4, -2) \)
### (g)
**Equations:**
1. \( x + 2y = 0 \)
2. \( y - xy = \frac{1}{2}x^2 - 2 \)
**Solution:**
The solutions are:
- \( (x, y) = (-2.5, 11) \)
- \( (x, y) = (4, -2) \)
### (h)
**Equations:**
1. \( y = \frac{-6}{x+2} - 1 \)
2. \( y + 2x - 6 = 0 \)
**Solution:**
The solutions are:
- \( (x, y) = (-1, 0) \)
- \( (x, y) = (9, 3.3) \)
### (i)
**Equations:**
1. \( y = \frac{3}{x} + 3 \)
2. \( 3y - x = 1 \)
**Solution:**
The solutions are:
- \( (x, y) = (-1, 0) \)
- \( (x, y) = (9, 3.3) \)
These results summarize the intersections or lack thereof for each pair of equations.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution