Question
upstudy study bank question image url

An investor wants to save money to purchase real estate. He buys an annuity with quarterly payments that earn \( 5.9 \% \) interest, compounded quarterly. Payments will be made at the end of each quarter. Find the total value of the annuity in 15 years if each quarterly payment is \( \$ 222 \). Do not round any intermediate computations, and round your final answer to the nearest cent. If necessary, refer to the list of financial formulas.

Ask by Powers Carrillo. in the United States
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The total value of the annuity after 15 years is \$21,182.17.

Solution

To find the total value of the annuity after 15 years with quarterly payments, we can use the future value of an ordinary annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) = future value of the annuity - \( P \) = payment amount per period - \( r \) = interest rate per period - \( n \) = total number of payments ### Step 1: Identify the known values - Quarterly payment \( P = 222 \) - Annual interest rate = \( 5.9\% \) - Quarterly interest rate \( r = \frac{5.9\%}{4} = \frac{0.059}{4} = 0.01475 \) - Total number of years = \( 15 \) - Total number of payments \( n = 15 \times 4 = 60 \) ### Step 2: Substitute the values into the formula Now we can substitute the values into the future value formula: \[ FV = 222 \times \frac{(1 + 0.01475)^{60} - 1}{0.01475} \] ### Step 3: Calculate the future value Let's perform the calculation. First, we need to calculate \( (1 + 0.01475)^{60} \): \[ (1 + 0.01475)^{60} \] Then we will substitute this value back into the formula to find \( FV \). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(\left(1+0.01475\right)^{60}\) - step1: Add the numbers: \(1.01475^{60}\) - step2: Convert the expressions: \(\left(\frac{4059}{4000}\right)^{60}\) - step3: Use the properties of exponents: \(\frac{4059^{60}}{4000^{60}}\) Calculate or simplify the expression \( 222 * ((1 + 0.01475)^{60} - 1) / 0.01475 \). Calculate the value by following steps: - step0: Calculate: \(\frac{222\left(\left(1+0.01475\right)^{60}-1\right)}{0.01475}\) - step1: Add the numbers: \(\frac{222\left(1.01475^{60}-1\right)}{0.01475}\) - step2: Convert the expressions: \(\frac{222\left(\left(\frac{4059}{4000}\right)^{60}-1\right)}{0.01475}\) - step3: Subtract the numbers: \(\frac{222\times \frac{4059^{60}-4000^{60}}{4000^{60}}}{0.01475}\) - step4: Multiply the numbers: \(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{0.01475}\) - step5: Convert the expressions: \(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{\frac{59}{4000}}\) - step6: Multiply by the reciprocal: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{4000}{59}\) - step7: Rewrite the expression: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{32\times 125}{59}\) - step8: Rewrite the expression: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{2^{5}\times 125}{59}\) - step9: Reduce the numbers: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}}\times \frac{1}{59}\) - step10: Multiply the fractions: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}\times 59}\) - step11: Multiply: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{59\times 2^{294}\times 125^{59}}\) ### Step 4: Calculate the values 1. **Calculate \( (1 + 0.01475)^{60} \)**: \[ (1 + 0.01475)^{60} \approx 2.407374 \] 2. **Substituting into the future value formula**: \[ FV = 222 \times \frac{(2.407374 - 1)}{0.01475} \] Now, calculate \( 2.407374 - 1 \): \[ 2.407374 - 1 \approx 1.407374 \] Then, substitute this back into the formula: \[ FV = 222 \times \frac{1.407374}{0.01475} \] ### Step 5: Final calculation Now, let's calculate the final future value \( FV \). I'll perform this calculation now. Calculate the value by following steps: - step0: Calculate: \(222\left(\frac{1.407374}{0.01475}\right)\) - step1: Divide the terms: \(222\times \frac{703687}{7375}\) - step2: Multiply: \(\frac{222\times 703687}{7375}\) - step3: Multiply: \(\frac{156218514}{7375}\) ### Final Calculation Result The future value \( FV \) of the annuity is approximately: \[ FV \approx 21182.17139 \] ### Step 6: Rounding the final answer Rounding this to the nearest cent gives: \[ FV \approx 21182.17 \] ### Conclusion The total value of the annuity in 15 years, with quarterly payments of \( \$ 222 \) at an interest rate of \( 5.9\% \) compounded quarterly, is **\$ 21,182.17**.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To calculate the future value of the annuity, we'll be using the Future Value of an Annuity formula: \[ FV = P \times \frac{{(1 + r)^n - 1}}{r} \] Where: - \( P \) is the payment per period (\$222), - \( r \) is the interest rate per period, - \( n \) is the total number of payments. In this case: - The annual interest rate is \( 5.9\% \), so the quarterly interest rate \( r = \frac{5.9\%}{4} = \frac{0.059}{4} = 0.01475 \). - The total number of payments over 15 years with quarterly payments is \( n = 15 \times 4 = 60 \). Now substitute these values into the formula: \[ FV = 222 \times \frac{{(1 + 0.01475)^{60} - 1}}{0.01475} \] Calculating \( (1 + 0.01475)^{60} \): \[ (1 + 0.01475)^{60} \approx 2.4596 \] Next, calculate \( (1 + 0.01475)^{60} - 1 \): \[ 2.4596 - 1 = 1.4596 \] Now, plug this into the future value formula: \[ FV = 222 \times \frac{1.4596}{0.01475} \approx 222 \times 99.4336 \approx 22005.33 \] Thus, the total value of the annuity in 15 years is approximately: \[ \boxed{22005.33} \]

Related Questions

C \$AP \( \begin{array}{l}\text { Para ilustrar la manera en que podemos modelar situaciones a través del uso de } \\ \text { las matemáticas, suponga el siguiente caso: }\end{array} \) Juan es ebanista y cuenta con un pequeño taller en el cual se dedica a la elaboración de mesas y sillas, las sillas se venden a 120 unidades monetarias (um/u) y las mesas a 150. Suponga por favor que en el taller de ebanistería se utiliza un solo tipo de madera para la elaboración de las mesas y sillas, y que esta madera se compra en unidades de medida de metros cuadrados (m2/u). Debido a su experiencia y los datos que ha venido registrando en su cuaderno de contabilidad, Juan conoce que para elaborar una silla se utilizan 0,7 metros cuadrados de madera y para elaborar una mesa se utilizan 1,4. Juan ha realizado cálculos previos y conoce que el costo de la mano de obra para producir una silla es de 50 unidades monetarias, y una mesa 60. Para la producción mensual de sillas y mesas, el taller dispone de 100 metros cuadrados de madera y 500 unidades monetarias para cubrir los costos de mano de obra. Ahora bien, dado que los recursos con los que se cuenta en la Ebanistería. Juan desea conocer cuál es la combinación de la cantidad de sillas (u) y mesas lu) que debe producir para maximizar sus ingresos en el mes ltenga en cuenta que la función de ingresos está dada por la cantidad de sillas y mesas que se produzcan multiplicadapor los precios de venta de cada productol.
Economics Colombia Feb 27, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy