Resolver las siguientes ecuaciobes, aplicando la formu general \( \quad \frac{-b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}}{} \begin{array}{l}\text { a } \\ \text { a) } 16 x^{2}-4 x-13=0\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
Para resolver la ecuación \(16x^{2}-4x-13=0\) usando la fórmula general, primero identificamos los coeficientes: \(a = 16\), \(b = -4\) y \(c = -13\). Ahora, calculamos el discriminante \(b^{2}-4ac\): \[ b^{2} = (-4)^{2} = 16 \] \[ 4ac = 4 \cdot 16 \cdot (-13) = -832 \] \[ b^{2}-4ac = 16 + 832 = 848 \] Luego, sustituimos en la fórmula general: \[ x = \frac{-(-4) \pm \sqrt{848}}{2 \cdot 16} = \frac{4 \pm \sqrt{848}}{32} \] Simplificando \(\sqrt{848}\): \[ \sqrt{848} = \sqrt{16 \cdot 53} = 4\sqrt{53} \] Entonces, la solución es: \[ x = \frac{4 \pm 4\sqrt{53}}{32} = \frac{1 \pm \sqrt{53}}{8} \] Las raíces son \(x_1 = \frac{1 + \sqrt{53}}{8}\) y \(x_2 = \frac{1 - \sqrt{53}}{8}\). ¡Y así se resuelven las ecuaciones! 🎉