Question
upstudy study bank question image url

Frank plans to buy a used car that costs \( \$ 26,000 \). The dealer requires a \( 5 \% \) down payment. The rest of the cost is financed with a 3 -year, fixed-rate amortize auto loan at \( 9 \% \) annual interest with monthly payments. Complete the parts below. Do not round any intermediate computations. Round your final answers to the nearest cent if necessary. If necessary, refer to the list of financial formulas. (a) Find the required down payment. (b) Find the amount of the auto loan. \( \$ \) (c) Find the monthly payment. (

Ask by Rojas Frazier. in the United States
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

(a) Down payment: $1,300 (b) Auto loan amount: $24,700 (c) Monthly payment: $785.45

Solution

Given: - Cost of the used car = $26,000 - Down payment = 5% of the cost of the car - Interest rate = 9% per annum - Loan duration = 3 years - Monthly payments (a) Find the required down payment: The down payment is 5% of the cost of the car. To find the down payment, we can calculate 5% of $26,000. Down payment = 5% of $26,000 = 0.05 * $26,000 = $1,300 (b) Find the amount of the auto loan: The amount of the auto loan is the cost of the car minus the down payment. Amount of the auto loan = Cost of the car - Down payment Amount of the auto loan = $26,000 - $1,300 = $24,700 (c) Find the monthly payment: To find the monthly payment, we can use the formula for monthly payments on a fixed-rate amortize loan: \[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (amount of the auto loan) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the number of payments (loan duration in years multiplied by 12) First, we need to calculate the monthly interest rate: \[ r = \frac{9\%}{12} = \frac{0.09}{12} = 0.0075 \] Now, we can calculate the monthly payment using the formula: \[ M = \frac{24700 \times 0.0075 \times (1 + 0.0075)^{36}}{(1 + 0.0075)^{36} - 1} \] Let's calculate the monthly payment. Calculate the value by following steps: - step0: Calculate: \(\frac{24700\times 0.0075\left(1+0.0075\right)^{36}}{\left(\left(1+0.0075\right)^{36}-1\right)}\) - step1: Remove the parentheses: \(\frac{24700\times 0.0075\left(1+0.0075\right)^{36}}{\left(1+0.0075\right)^{36}-1}\) - step2: Add the numbers: \(\frac{24700\times 0.0075\times 1.0075^{36}}{\left(1+0.0075\right)^{36}-1}\) - step3: Add the numbers: \(\frac{24700\times 0.0075\times 1.0075^{36}}{1.0075^{36}-1}\) - step4: Convert the expressions: \(\frac{24700\times 0.0075\left(\frac{403}{400}\right)^{36}}{1.0075^{36}-1}\) - step5: Convert the expressions: \(\frac{24700\times 0.0075\left(\frac{403}{400}\right)^{36}}{\left(\frac{403}{400}\right)^{36}-1}\) - step6: Multiply: \(\frac{\frac{741\times 403^{36}}{4\times 400^{36}}}{\left(\frac{403}{400}\right)^{36}-1}\) - step7: Subtract the numbers: \(\frac{\frac{741\times 403^{36}}{4\times 400^{36}}}{\frac{403^{36}-400^{36}}{400^{36}}}\) - step8: Multiply by the reciprocal: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{400^{36}}{403^{36}-400^{36}}\) - step9: Rewrite the expression: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{16^{36}\times 25^{36}}{403^{36}-400^{36}}\) - step10: Rewrite the expression: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{4^{72}\times 25^{36}}{403^{36}-400^{36}}\) - step11: Reduce the numbers: \(\frac{741\times 403^{36}}{400^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step12: Rewrite the expression: \(\frac{741\times 403^{36}}{16^{36}\times 25^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step13: Rewrite the expression: \(\frac{741\times 403^{36}}{4^{72}\times 25^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step14: Reduce the numbers: \(\frac{741\times 403^{36}}{4}\times \frac{1}{403^{36}-400^{36}}\) - step15: Multiply the fractions: \(\frac{741\times 403^{36}}{4\left(403^{36}-400^{36}\right)}\) - step16: Multiply: \(\frac{741\times 403^{36}}{4\times 403^{36}-4\times 400^{36}}\) The monthly payment is approximately $785.45.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To tackle Frank's car purchase, let's break it down step-by-step! To begin with, Frank's required down payment is 5% of the total cost of the car. So, we calculate: \[ \text{Down payment} = 0.05 \times \$26,000 = \$1,300 \] Now, moving on to the amount of the auto loan. Since the down payment is deducted from the total price, the loan amount would be: \[ \text{Loan amount} = \text{Total cost} - \text{Down payment} = \$26,000 - \$1,300 = \$24,700 \] Next, we need to find the monthly payment for the auto loan. We use the formula for monthly payments on an amortizing loan: \[ M = P \times \left(\frac{r(1 + r)^n}{(1 + r)^n - 1}\right) \] Where: - \( P \) is the loan amount (\$24,700) - \( r \) is the monthly interest rate (annual rate of 9% divided by 12 months = 0.0075) - \( n \) is the number of payments (3 years × 12 months = 36) Now plug in the values: \[ M = 24,700 \times \left(\frac{0.0075(1 + 0.0075)^{36}}{(1 + 0.0075)^{36} - 1}\right) \] Calculating this will give us: 1. Calculate \( (1 + 0.0075)^{36} \approx 1.28368 \) 2. Therefore: \[ M = 24,700 \times \left(\frac{0.0075 \times 1.28368}{1.28368 - 1}\right) \approx 24,700 \times \left(\frac{0.0096276}{0.28368}\right) \] 3. This results in: \[ M \approx 24,700 \times 0.03398 \approx 839.63 \] So, rounding to the nearest cent, Frank's monthly payment will be approximately: \[ \boxed{839.63} \] Thus, summarizing the answers: (a) The required down payment is \$1,300. (b) The amount of the auto loan is \$24,700. (c) The monthly payment is approximately \$839.63.

Related Questions

C \$AP \( \begin{array}{l}\text { Para ilustrar la manera en que podemos modelar situaciones a través del uso de } \\ \text { las matemáticas, suponga el siguiente caso: }\end{array} \) Juan es ebanista y cuenta con un pequeño taller en el cual se dedica a la elaboración de mesas y sillas, las sillas se venden a 120 unidades monetarias (um/u) y las mesas a 150. Suponga por favor que en el taller de ebanistería se utiliza un solo tipo de madera para la elaboración de las mesas y sillas, y que esta madera se compra en unidades de medida de metros cuadrados (m2/u). Debido a su experiencia y los datos que ha venido registrando en su cuaderno de contabilidad, Juan conoce que para elaborar una silla se utilizan 0,7 metros cuadrados de madera y para elaborar una mesa se utilizan 1,4. Juan ha realizado cálculos previos y conoce que el costo de la mano de obra para producir una silla es de 50 unidades monetarias, y una mesa 60. Para la producción mensual de sillas y mesas, el taller dispone de 100 metros cuadrados de madera y 500 unidades monetarias para cubrir los costos de mano de obra. Ahora bien, dado que los recursos con los que se cuenta en la Ebanistería. Juan desea conocer cuál es la combinación de la cantidad de sillas (u) y mesas lu) que debe producir para maximizar sus ingresos en el mes ltenga en cuenta que la función de ingresos está dada por la cantidad de sillas y mesas que se produzcan multiplicadapor los precios de venta de cada productol.
Economics Colombia Feb 27, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy