Question
upstudy study bank question image url

4. Find the value of the ratios below in terms of \( \sqrt{2} \) and \( \sqrt{3} \) using the sum or difference of two special angles. \( \begin{array}{llll}4.1 \cos 15^{\circ} & \left.\text { [Hint: } 15^{\circ}=60^{\circ}-45^{\circ}\right] & 4.2 & \sin 75^{\circ} \\ 4.3 \cos 105^{\circ} & 4.4 & \sin 195^{\circ} \\ 4.5 \sin 165^{\circ} & 4.6 & \tan 15^{\circ}\end{array} \)

Ask by Davey Morrison. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the values of the given trigonometric expressions in terms of \( \sqrt{2} \) and \( \sqrt{3} \): 1. \( \cos 15^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} \) 2. \( \sin 75^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} \) 3. \( \cos 105^\circ = \frac{\sqrt{2} - \sqrt{6}}{4} \) 4. \( \sin 195^\circ = \frac{\sqrt{2} - \sqrt{6}}{4} \) 5. \( \sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) 6. \( \tan 15^\circ = 2 - \sqrt{3} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

To find the requested trigonometric values involving special angles, we can use the angle subtraction or addition formulas. To solve \( \cos 15^\circ \) which is \( \cos(60^\circ - 45^\circ) \), we use the formula \(\cos(A - B) = \cos A \cos B + \sin A \sin B\). Thus, we have: \[ \cos 15^\circ = \cos 60^\circ \cos 45^\circ + \sin 60^\circ \sin 45^\circ = \left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}. \] Next, to find \( \sin 75^\circ \), we note that \( 75^\circ = 45^\circ + 30^\circ \). Using the addition formula \(\sin(A + B) = \sin A \cos B + \cos A \sin B\), we calculate: \[ \sin 75^\circ = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}. \] For \( \cos 105^\circ \), we rewrite it using \( 180^\circ - 75^\circ \): \[ \cos 105^\circ = -\cos 75^\circ = -\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right) = -\frac{\sqrt{6} + \sqrt{2}}{4}. \] Now, \( \sin 195^\circ \) can be expressed as \( \sin(180^\circ + 15^\circ) \): \[ \sin 195^\circ = -\sin 15^\circ = -\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4}. \] For \( \sin 165^\circ \), observe that \( 165^\circ = 180^\circ - 15^\circ \): \[ \sin 165^\circ = \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}. \] Finally, for \( \tan 15^\circ \): Using the formula \( \tan A = \frac{\sin A}{\cos A} \): \[ \tan 15^\circ = \frac{\sin 15^\circ}{\cos 15^\circ} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}. \] Thus, summarizing the results: \[ \begin{align*} 4.1 & : \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.2 & : \sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.3 & : \cos 105^\circ = -\frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.4 & : \sin 195^\circ = -\frac{\sqrt{6} - \sqrt{2}}{4}, \\ 4.5 & : \sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}, \\ 4.6 & : \tan 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}. \end{align*} \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy