4. Resolva as expressões a seguir a) \( 27^{-1}+(-9)^{-2}-3^{-3}-(-3)^{-4}= \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Bonus Knowledge
Para resolver a expressão \( 27^{-1}+(-9)^{-2}-3^{-3}-(-3)^{-4} \), vamos calcular cada termo separadamente: 1. \( 27^{-1} = \frac{1}{27} \) 2. \( (-9)^{-2} = \frac{1}{(-9)^2} = \frac{1}{81} \) 3. \( -3^{-3} = -\frac{1}{3^3} = -\frac{1}{27} \) 4. \( -(-3)^{-4} = -\frac{1}{(-3)^4} = -\frac{1}{81} \) Agora, juntamos tudo: \[ \frac{1}{27} + \frac{1}{81} - \frac{1}{27} - \frac{1}{81} \] Os termos \( \frac{1}{27} \) e \( -\frac{1}{27} \) se cancelam, e os termos \( \frac{1}{81} \) e \( -\frac{1}{81} \) também se cancelam. Portanto, a expressão total é: \[ 0 \] A resposta final é \( 0 \).