Question
upstudy study bank question image url

Martina has decided to invest to help with her retirement savings. How much would she have to invest to have \( \$ 136,900 \) after 20 years, assuming an interest rate of \( 3.58 \% \) compounded monthly? Do not round any intermediate computations, and round your final answer to the nearest dollar. If necessary, refer to the list of financial formulas.

Ask by Warren Mccoy. in the United States
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Martina needs to invest approximately \$67,028 today to have \$136,900 after 20 years at a 3.58% annual interest rate compounded monthly.

Solution

To determine how much Martina needs to invest today to have \( \$136,900 \) after 20 years with an interest rate of \( 3.58\% \) compounded monthly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. In this case: - \( A = 136900 \) - \( r = 0.0358 \) - \( n = 12 \) (since the interest is compounded monthly) - \( t = 20 \) We need to solve for \( P \): \[ P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} \] Now, let's calculate \( P \) step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{r}{n} = \frac{0.0358}{12} \] 2. Calculate \( nt \): \[ nt = 12 \times 20 \] 3. Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \). 4. Finally, calculate \( P \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(12\times 20\) - step1: Multiply the numbers: \(240\) Calculate or simplify the expression \( 0.0358/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.0358}{12}\) - step1: Convert the expressions: \(\frac{\frac{179}{5000}}{12}\) - step2: Multiply by the reciprocal: \(\frac{179}{5000}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{179}{5000\times 12}\) - step4: Multiply: \(\frac{179}{60000}\) Calculate or simplify the expression \( (1 + 0.00298)^(240) \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.00298\right)^{240}\) - step1: Add the numbers: \(1.00298^{240}\) - step2: Convert the expressions: \(\left(\frac{50149}{50000}\right)^{240}\) - step3: Use the properties of exponents: \(\frac{50149^{240}}{50000^{240}}\) Calculate or simplify the expression \( 136900/(2.042422) \). Calculate the value by following steps: - step0: Calculate: \(\frac{136900}{2.042422}\) - step1: Convert the expressions: \(\frac{136900}{\frac{1021211}{500000}}\) - step2: Multiply by the reciprocal: \(136900\times \frac{500000}{1021211}\) - step3: Multiply: \(\frac{136900\times 500000}{1021211}\) - step4: Multiply: \(\frac{68450000000}{1021211}\) Now, let's summarize the calculations step by step: 1. **Calculate \( \frac{r}{n} \)**: \[ \frac{r}{n} = \frac{0.0358}{12} \approx 0.002983 \] 2. **Calculate \( nt \)**: \[ nt = 12 \times 20 = 240 \] 3. **Calculate \( \left(1 + \frac{r}{n}\right)^{nt} \)**: \[ \left(1 + 0.002983\right)^{240} \approx 2.042422 \] 4. **Calculate \( P \)**: \[ P = \frac{136900}{2.042422} \approx 67028.26 \] Finally, rounding to the nearest dollar, Martina would need to invest approximately: \[ \boxed{67028} \] This is the amount she needs to invest today to reach her retirement goal of \( \$136,900 \) after 20 years at an interest rate of \( 3.58\% \) compounded monthly.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To find out how much Martina needs to invest now to have \( \$ 136,900 \) after 20 years at a monthly compounded interest rate of \( 3.58\% \), we can use the formula for future value: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] where: - \( PV \) is the present value (the amount to invest now), - \( FV = 136900 \) (future value), - \( r = 0.0358 \) (annual interest rate), - \( n = 12 \) (number of compounding periods per year), - \( t = 20 \) (number of years). Plugging in the values, we get: \[ PV = \frac{136900}{\left(1 + \frac{0.0358}{12}\right)^{12 \times 20}} \] Calculating the monthly interest rate: \[ \frac{0.0358}{12} = 0.00298333 \] Then, calculate the total number of compounding periods: \[ 12 \times 20 = 240 \] Now we substitute back into the formula: \[ PV = \frac{136900}{(1 + 0.00298333)^{240}} \approx \frac{136900}{1.879465} \] Finally, calculating the present value: \[ PV \approx \frac{136900}{1.879465} \approx 72,882 \] Thus, Martina would need to invest approximately **$72,882** to reach her goal of $136,900 after 20 years at the specified interest rate.

Related Questions

C \$AP \( \begin{array}{l}\text { Para ilustrar la manera en que podemos modelar situaciones a través del uso de } \\ \text { las matemáticas, suponga el siguiente caso: }\end{array} \) Juan es ebanista y cuenta con un pequeño taller en el cual se dedica a la elaboración de mesas y sillas, las sillas se venden a 120 unidades monetarias (um/u) y las mesas a 150. Suponga por favor que en el taller de ebanistería se utiliza un solo tipo de madera para la elaboración de las mesas y sillas, y que esta madera se compra en unidades de medida de metros cuadrados (m2/u). Debido a su experiencia y los datos que ha venido registrando en su cuaderno de contabilidad, Juan conoce que para elaborar una silla se utilizan 0,7 metros cuadrados de madera y para elaborar una mesa se utilizan 1,4. Juan ha realizado cálculos previos y conoce que el costo de la mano de obra para producir una silla es de 50 unidades monetarias, y una mesa 60. Para la producción mensual de sillas y mesas, el taller dispone de 100 metros cuadrados de madera y 500 unidades monetarias para cubrir los costos de mano de obra. Ahora bien, dado que los recursos con los que se cuenta en la Ebanistería. Juan desea conocer cuál es la combinación de la cantidad de sillas (u) y mesas lu) que debe producir para maximizar sus ingresos en el mes ltenga en cuenta que la función de ingresos está dada por la cantidad de sillas y mesas que se produzcan multiplicadapor los precios de venta de cada productol.
Economics Colombia Feb 27, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy