Question
upstudy study bank question image url

stema \( \left\{\begin{array}{l}x+y=6 \\ 5 x-4 y=12\end{array}\right. \)

Ask by Gray Welch. in Ecuador
Jan 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución es \( x = 4 \) y \( y = 2 \).

Solution

Claro, resolvamos el siguiente sistema de ecuaciones: \[ \left\{ \begin{array}{l} x + y = 6 \\ 5x - 4y = 12 \end{array} \right. \] ### Paso 1: Despejar una variable Primero, despejamos \( x \) de la primera ecuación: \[ x = 6 - y \] ### Paso 2: Sustituir en la segunda ecuación Sustituimos \( x \) en la segunda ecuación: \[ 5(6 - y) - 4y = 12 \] Distribuimos el 5: \[ 30 - 5y - 4y = 12 \] Combinamos términos semejantes: \[ 30 - 9y = 12 \] ### Paso 3: Resolver para \( y \) Restamos 30 de ambos lados: \[ -9y = 12 - 30 \] \[ -9y = -18 \] \[ y = \frac{-18}{-9} = 2 \] ### Paso 4: Encontrar \( x \) Sustituyendo \( y = 2 \) en la ecuación despejada para \( x \): \[ x = 6 - 2 = 4 \] ### Solución La solución del sistema es: \[ x = 4 \quad \text{y} \quad y = 2 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver el sistema de ecuaciones \( \left\{\begin{array}{l}x+y=6 \\ 5 x-4 y=12\end{array}\right. \), primero despejamos \( y \) de la primera ecuación: \( y = 6 - x \). Luego sustituimos \( y \) en la segunda ecuación: \[ 5x - 4(6 - x) = 12. \] Simplificando obtenemos: \[ 5x - 24 + 4x = 12, \] \[ 9x - 24 = 12, \] \[ 9x = 36, \] \[ x = 4. \] Sustituyendo \( x \) en \( y = 6 - x \): \[ y = 6 - 4 = 2. \] Por lo tanto, la solución del sistema es \( (x, y) = (4, 2) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy