Question
upstudy study bank question image url

\( \left. \begin{array} { l } { \vee 450 . ( 3 x + 1 ) ( 6 - 4 x ) = 0 } \\ { \vee 451 . ( 5 x - 4 ) ( x + 8 ) = 0 } \\ { \vee 452 . ( 6 x + 3 ) ( 9 - x ) = 0 } \end{array} \right. \)

Ask by Welch Chavez. in Russia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Решения уравнений: - \( x = -\frac{1}{3}, \frac{3}{2}, \frac{4}{5}, -8, -\frac{1}{2}, 9 \)

Solution

Давайте решим систему уравнений, представленную в виде произведений, равных нулю. Это означает, что хотя бы один из множителей в каждом уравнении равен нулю. Мы будем решать каждое уравнение по отдельности. 1. **Первое уравнение:** \[ (3x + 1)(6 - 4x) = 0 \] Это уравнение равно нулю, если: - \(3x + 1 = 0\) - \(6 - 4x = 0\) Решим каждое из этих уравнений: - Для \(3x + 1 = 0\): \[ 3x = -1 \implies x = -\frac{1}{3} \] - Для \(6 - 4x = 0\): \[ 4x = 6 \implies x = \frac{3}{2} \] Таким образом, решения первого уравнения: \(x = -\frac{1}{3}, \frac{3}{2}\). 2. **Второе уравнение:** \[ (5x - 4)(x + 8) = 0 \] Это уравнение равно нулю, если: - \(5x - 4 = 0\) - \(x + 8 = 0\) Решим каждое из этих уравнений: - Для \(5x - 4 = 0\): \[ 5x = 4 \implies x = \frac{4}{5} \] - Для \(x + 8 = 0\): \[ x = -8 \] Таким образом, решения второго уравнения: \(x = \frac{4}{5}, -8\). 3. **Третье уравнение:** \[ (6x + 3)(9 - x) = 0 \] Это уравнение равно нулю, если: - \(6x + 3 = 0\) - \(9 - x = 0\) Решим каждое из этих уравнений: - Для \(6x + 3 = 0\): \[ 6x = -3 \implies x = -\frac{1}{2} \] - Для \(9 - x = 0\): \[ x = 9 \] Таким образом, решения третьего уравнения: \(x = -\frac{1}{2}, 9\). Теперь соберем все решения вместе: - Из первого уравнения: \(x = -\frac{1}{3}, \frac{3}{2}\) - Из второго уравнения: \(x = \frac{4}{5}, -8\) - Из третьего уравнения: \(x = -\frac{1}{2}, 9\) Итак, все решения системы уравнений: \[ x = -\frac{1}{3}, \frac{3}{2}, \frac{4}{5}, -8, -\frac{1}{2}, 9 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equations, we can use the Zero Product Property, which states that if a product of factors equals zero, at least one of the factors must be zero. For \( 450. ( 3x + 1)(6 - 4x) = 0 \): Setting each factor to zero gives: 1. \( 3x + 1 = 0 \) ⟹ \( x = -\frac{1}{3} \) 2. \( 6 - 4x = 0 \) ⟹ \( x = \frac{3}{2} \) For \( 451. (5x - 4)(x + 8) = 0 \): 1. \( 5x - 4 = 0 \) ⟹ \( x = \frac{4}{5} \) 2. \( x + 8 = 0 \) ⟹ \( x = -8 \) For \( 452. (6x + 3)(9 - x) = 0 \): 1. \( 6x + 3 = 0 \) ⟹ \( x = -\frac{1}{2} \) 2. \( 9 - x = 0 \) ⟹ \( x = 9 \) To summarize: 1. From \( 450 \): \( x = -\frac{1}{3}, \frac{3}{2} \) 2. From \( 451 \): \( x = \frac{4}{5}, -8 \) 3. From \( 452 \): \( x = -\frac{1}{2}, 9 \) Get ready to unlock those numbers! Math isn't just a crunching of numbers; it's a journey, just like the great stories of problem solvers throughout history! Imagine mathematicians of the past, like Archimedes, who laid the groundwork for modern algebra while pondering the mysteries of the universe and solving practical problems of their time. Even today, these equations have practical uses in fields like engineering, finance, and physics. For instance, you can model everything from the height of a projectile to analyzing profit margins with such equations. Next time you encounter similar quadratic equations, remember that you're not just solving for \( x \), you're solving for various real-world applications, making your understanding incredibly valuable!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy