Question
upstudy study bank question image url

(3) Resuelua la avación polinominal, epresar la respuesta en forma gratica, en forma de intervalo y en forma de Jesiaguadad. \( -2+x^{2} \geq 3(x+0)-2 \)

Ask by Hart Parsons. in Ecuador
Jan 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la desigualdad polinomial es: - **Forma gráfica:** La parábola \( y = x^{2} - 3x \) se encuentra por encima o en la línea x para \( x \leq 0 \) y \( x \geq 3 \). - **Intervalo:** \( (-\infty, 0] \cup [3, \infty) \) - **Jesiguadad:** \( x \leq 0 \) o \( x \geq 3 \)

Solution

Okay, I need to solve the polynomial inequality: \[ -2 + x^{2} \geq 3(x + 0) - 2 \] First, let's simplify the right side of the inequality. Since \(3(x + 0)\) simplifies to \(3x\), the inequality becomes: \[ -2 + x^{2} \geq 3x - 2 \] Next, I'll move all terms to one side to set the inequality to zero: \[ x^{2} - 3x - 2 + 2 \geq 0 \] Simplifying further: \[ x^{2} - 3x \geq 0 \] Now, I'll factor the quadratic expression: \[ x(x - 3) \geq 0 \] To find the critical points, I'll set each factor equal to zero: \[ x = 0 \quad \text{and} \quad x = 3 \] These points divide the number line into three intervals: \( (-\infty, 0) \), \( (0, 3) \), and \( (3, \infty) \). I'll test a value from each interval to determine where the inequality holds true. 1. **Interval \( (-\infty, 0) \):** Let's choose \( x = -1 \) \[ (-1)(-1 - 3) = (-1)(-4) = 4 \geq 0 \quad \text{(True)} \] 2. **Interval \( (0, 3) \):** Let's choose \( x = 1 \) \[ (1)(1 - 3) = (1)(-2) = -2 \geq 0 \quad \text{(False)} \] 3. **Interval \( (3, \infty) \):** Let's choose \( x = 4 \) \[ (4)(4 - 3) = (4)(1) = 4 \geq 0 \quad \text{(True)} \] From the tests, the inequality holds true in the intervals \( (-\infty, 0) \) and \( (3, \infty) \). Since the inequality is non-strict (\(\geq\)), the endpoints \( x = 0 \) and \( x = 3 \) are also included. **Graphical Representation:** - The graph of \( y = x^{2} - 3x \) is a parabola opening upwards with its vertex at \( x = \frac{3}{2} \). - The parabola intersects the x-axis at \( x = 0 \) and \( x = 3 \). - The inequality \( x^{2} - 3x \geq 0 \) is satisfied where the parabola is above or on the x-axis. **Interval Notation:** \[ (-\infty, 0] \cup [3, \infty) \] **Jesiguadad (Solution Set):** \[ x \leq 0 \quad \text{or} \quad x \geq 3 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para resolver la desigualdad \( -2 + x^{2} \geq 3(x + 0) - 2 \), primero simplificamos el lado derecho: \( 3(x + 0) - 2 = 3x - 2 \). Ahora, tenemos la desigualdad \( -2 + x^{2} \geq 3x - 2 \). Si sumamos 2 a ambos lados, se simplifica a \( x^{2} \geq 3x \). Movemos todo a un lado para obtener la forma estándar: \( x^{2} - 3x \geq 0 \). Factorizando, encontramos \( x(x - 3) \geq 0 \). Ahora resolvemos la desigualdad: los puntos críticos vienen de igualar a cero, es decir, \( x = 0 \) y \( x = 3 \). La solución se agrupa en intervalos analizando el signo de \( x(x - 3) \) en los intervalos \( (-\infty, 0) \), \( (0, 3) \) y \( (3, \infty) \). La gráfica muestra que la desigualdad se cumple para \( x \leq 0 \) y \( x \geq 3 \). En notación de intervalo, la respuesta es \( (-\infty, 0] \cup [3, \infty) \). Finalmente, en forma de desigualdad, podemos expresar la solución como \( x \in (-\infty, 0] \cup [3, \infty) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy