Question
upstudy study bank question image url

Multiply. \[ \left(8 a^{2} b-9 a b+3 b^{2}\right)(a b-9 b+a) \] \( \left(8 a^{2} b-9 a b+3 b^{2}\right)(a b-9 b+a)=\square \) (Simplify your answer.)

Ask by Wang Stanley. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( 8a³b² + 8a³b – 81a²b² – 9a²b + 3ab³ + 84ab² – 27b³ \)

Solution

We wish to multiply   (8a²b – 9ab + 3b²)(ab – 9b + a). Step 1. Write the second factor in a standard order. Notice that   ab – 9b + a = ab + a – 9b. For clarity, we will distribute each term in the first factor through each term in the second factor. Step 2. Distribute each term:  • Multiply 8a²b by each term of (ab + a – 9b):   – 8a²b · ab = 8a³b²,   – 8a²b · a = 8a³b,   – 8a²b · (–9b) = –72a²b².  • Multiply –9ab by each term:   – (–9ab) · ab = –9a²b²,   – (–9ab) · a = –9a²b,   – (–9ab) · (–9b) = +81ab².  • Multiply 3b² by each term:   – 3b² · ab = 3ab³,   – 3b² · a = 3ab²,   – 3b² · (–9b) = –27b³. Step 3. Write down all the products:   8a³b² + 8a³b – 72a²b² – 9a²b² – 9a²b + 81ab² + 3ab³ + 3ab² – 27b³. Step 4. Combine like terms:  • a³b² term:   8a³b².  • a³b term:   8a³b.  • a²b² terms:   –72a²b² – 9a²b² = –81a²b².  • a²b term:   –9a²b.  • ab³ term:   3ab³.  • ab² terms:   81ab² + 3ab² = 84ab².  • b³ term:   –27b³. Thus, the product is   8a³b² + 8a³b – 81a²b² – 9a²b + 3ab³ + 84ab² – 27b³. This is the simplified expanded form of the given product.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To multiply the given expressions, we will use the distributive property (also known as the FOIL method for binomials). We start with: \[ \left(8 a^{2} b - 9 a b + 3 b^{2}\right)(a b - 9 b + a) \] Distributing each term from the first polynomial to each term in the second: 1. \( 8 a^{2} b \cdot a b = 8 a^{3} b^{2} \) 2. \( 8 a^{2} b \cdot (-9 b) = -72 a^{2} b^{2} \) 3. \( 8 a^{2} b \cdot a = 8 a^{3} b \) 4. \( -9 a b \cdot a b = -9 a^{2} b^{2} \) 5. \( -9 a b \cdot (-9 b) = 81 a b^{2} \) 6. \( -9 a b \cdot a = -9 a^{2} b \) 7. \( 3 b^{2} \cdot a b = 3 a b^{3} \) 8. \( 3 b^{2} \cdot (-9 b) = -27 b^{3} \) 9. \( 3 b^{2} \cdot a = 3 a b^{2} \) Now we combine all these results together: \[ 8 a^{3} b^{2} - 72 a^{2} b^{2} + 8 a^{3} b - 9 a^{2} b^{2} + 81 a b^{2} - 9 a^{2} b + 3 a b^{3} - 27 b^{3} + 3 a b^{2} \] Next, we combine like terms: 1. \( a^3 b^2: 8 a^3 b^2 \) 2. \( a^2 b^2: -72 a^2 b^2 - 9 a^2 b^2 = -81 a^2 b^2 \) 3. \( a^3 b: 8 a^3 b \) 4. \( a^2 b: -9 a^2 b \) 5. \( ab^2: 81 ab^2 + 3 ab^2 = 84 ab^2 \) 6. \( ab^3: 3 ab^3 \) 7. \( b^3: -27 b^3 \) The final combined expression is: \[ 8 a^{3} b + (8 a^{3} b^2) + 84 a b^{2} - 27 b^{3} - 81 a^{2} b^{2} + 3 a b^{3} \] This simplifies down to: \[ 8 a^{3} b + (-81 a^{2} b^{2} + 84 a b^{2} - 27 b^{3}) + 3 ab^{3} \] So putting everything together gives us the final answer: \[ \boxed{8 a^{3} b + (-81 a^{2} b^{2} + 84 a b^{2} + 3 a b^{3} - 27 b^{3})} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy