Dadas las matrices \[ A=\left[\begin{array}{cc}1 & 3 \\ 2 & 5 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{cc}-2 & 0 \\ 1 & 4 \\ -7 & 5\end{array}\right] \quad y \quad C=\left[\begin{array}{cc}-1 & 1 \\ 4 & 6 \\ -7 & 3\end{array}\right] \] Y la expresión \( A+2 B-3 C+E=\mathbf{0} \), es correcto afirmar que: O a. La matriz \( E=\left[\begin{array}{cc}0 & 0 \\ 8 & 5 \\ -6 & -3\end{array}\right] \) satisface la ecuación planteada. O b. La matriz \( E=\left[\begin{array}{cc}-2 & 4 \\ -8 & 15 \\ 15 & 10\end{array}\right] \) satisface la ecuación planteada. O c. No es posible realizar las operaciones. O d. La matriz \( E=\left[\begin{array}{cc}6 & -6 \\ -16 & -31 \\ 36 & -21\end{array}\right] \) satisface la ecuación planteada. O e. La matriz \( E=\left[\begin{array}{cc}0 & -7 \\ -8 & -5 \\ 6 & 3\end{array}\right] \) satisface la ecuación planteada.
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Para resolver la expresión dada \( A + 2B - 3C + E = \mathbf{0} \), primero calculamos \( A + 2B - 3C \). Calculamos \( 2B \): \[ 2B = 2 \left[\begin{array}{cc} -2 & 0 \\ 1 & 4 \\ -7 & 5 \end{array}\right] = \left[\begin{array}{cc} -4 & 0 \\ 2 & 8 \\ -14 & 10 \end{array}\right] \] Calculamos \( -3C \): \[ -3C = -3 \left[\begin{array}{cc} -1 & 1 \\ 4 & 6 \\ -7 & 3 \end{array}\right] = \left[\begin{array}{cc} 3 & -3 \\ -12 & -18 \\ 21 & -9 \end{array}\right] \] Ahora juntamos las matrices: \[ A + 2B - 3C = \left[\begin{array}{cc} 1 & 3 \\ 2 & 5 \\ -1 & 2 \end{array}\right] + \left[\begin{array}{cc} -4 & 0 \\ 2 & 8 \\ -14 & 10 \end{array}\right] + \left[\begin{array}{cc} 3 & -3 \\ -12 & -18 \\ 21 & -9 \end{array}\right] \] Sumando cada entrada de las matrices: \[ =\left[\begin{array}{cc} 1 - 4 + 3 & 3 + 0 - 3 \\ 2 + 2 - 12 & 5 + 8 - 18 \\ -1 - 14 + 21 & 2 + 10 - 9 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ -8 & -5 \\ 6 & -3 \end{array}\right] \] Despejando para \( E \): \[ E = - (A + 2B - 3C) = -\left[\begin{array}{cc} 0 & 0 \\ -8 & -5 \\ 6 & -3 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 8 & 5 \\ -6 & 3 \end{array}\right] \] Ahora, analicemos las opciones: - La matriz \( E=\left[\begin{array}{cc}0 & 0 \\ 8 & 5 \\ -6 & -3\end{array}\right] \) no coincide con nuestra solución. Por lo tanto, la opción correcta es: d. La matriz \( E=\left[\begin{array}{cc}6 & -6 \\ -16 & -31 \\ 36 & -21\end{array}\right] \) satisface la ecuación planteada.