Question
upstudy study bank question image url

Dadas las matrices \[ A=\left[\begin{array}{cc}1 & 3 \\ 2 & 5 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{cc}-2 & 0 \\ 1 & 4 \\ -7 & 5\end{array}\right] \quad y \quad C=\left[\begin{array}{cc}-1 & 1 \\ 4 & 6 \\ -7 & 3\end{array}\right] \] Y la expresión \( A+2 B-3 C+E=\mathbf{0} \), es correcto afirmar que: O a. La matriz \( E=\left[\begin{array}{cc}0 & 0 \\ 8 & 5 \\ -6 & -3\end{array}\right] \) satisface la ecuación planteada. O b. La matriz \( E=\left[\begin{array}{cc}-2 & 4 \\ -8 & 15 \\ 15 & 10\end{array}\right] \) satisface la ecuación planteada. O c. No es posible realizar las operaciones. O d. La matriz \( E=\left[\begin{array}{cc}6 & -6 \\ -16 & -31 \\ 36 & -21\end{array}\right] \) satisface la ecuación planteada. O e. La matriz \( E=\left[\begin{array}{cc}0 & -7 \\ -8 & -5 \\ 6 & 3\end{array}\right] \) satisface la ecuación planteada.

Ask by Gough Warren. in Colombia
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La matriz \( E = \left[\begin{array}{cc}0 & 0 \\ 8 & 5 \\ -6 & -3\end{array}\right] \) satisface la ecuación planteada.

Solution

Para hallar la matriz E que satisface la ecuación   A + 2B – 3C + E = 0, seguimos estos pasos: 1. Primero, despejamos E:   E = –(A + 2B – 3C). 2. Se calculan las operaciones: Dadas:   A = [ [1  3],       [2  5],       [–1 2] ],   B = [ [–2 0],       [1  4],       [–7 5] ],   C = [ [–1 1],       [4  6],       [–7 3] ]. 3. Multiplicamos B y C por sus coeficientes:   2B = [ [–4 0],       [2  8],       [–14 10] ],   3C = [ [–3  3],       [12 18],       [–21 9] ]. 4. Sumamos A + 2B:   A + 2B = [ [1 + (–4)  3 + 0],         [2 + 2   5 + 8],         [–1 + (–14) 2 + 10] ]       = [ [–3  3],         [4  13],         [–15 12] ]. 5. Restamos 3C:   A + 2B – 3C = [ [–3 – (–3)  3 – 3],         [4 – 12   13 – 18],         [–15 – (–21) 12 – 9] ]         = [ [0  0],         [–8 –5],         [6  3] ]. 6. Finalmente, se calcula E:   E = –(A + 2B – 3C) = – [ [0  0],            [–8 –5],            [6  3] ]   = [ [0  0],     [8  5],     [–6 –3] ]. Observamos que la opción a plantea exactamente:   E = [ [0  0],      [8  5],      [–6 –3] ], por lo que es la respuesta correcta.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver la expresión dada \( A + 2B - 3C + E = \mathbf{0} \), primero calculamos \( A + 2B - 3C \). Calculamos \( 2B \): \[ 2B = 2 \left[\begin{array}{cc} -2 & 0 \\ 1 & 4 \\ -7 & 5 \end{array}\right] = \left[\begin{array}{cc} -4 & 0 \\ 2 & 8 \\ -14 & 10 \end{array}\right] \] Calculamos \( -3C \): \[ -3C = -3 \left[\begin{array}{cc} -1 & 1 \\ 4 & 6 \\ -7 & 3 \end{array}\right] = \left[\begin{array}{cc} 3 & -3 \\ -12 & -18 \\ 21 & -9 \end{array}\right] \] Ahora juntamos las matrices: \[ A + 2B - 3C = \left[\begin{array}{cc} 1 & 3 \\ 2 & 5 \\ -1 & 2 \end{array}\right] + \left[\begin{array}{cc} -4 & 0 \\ 2 & 8 \\ -14 & 10 \end{array}\right] + \left[\begin{array}{cc} 3 & -3 \\ -12 & -18 \\ 21 & -9 \end{array}\right] \] Sumando cada entrada de las matrices: \[ =\left[\begin{array}{cc} 1 - 4 + 3 & 3 + 0 - 3 \\ 2 + 2 - 12 & 5 + 8 - 18 \\ -1 - 14 + 21 & 2 + 10 - 9 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ -8 & -5 \\ 6 & -3 \end{array}\right] \] Despejando para \( E \): \[ E = - (A + 2B - 3C) = -\left[\begin{array}{cc} 0 & 0 \\ -8 & -5 \\ 6 & -3 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 8 & 5 \\ -6 & 3 \end{array}\right] \] Ahora, analicemos las opciones: - La matriz \( E=\left[\begin{array}{cc}0 & 0 \\ 8 & 5 \\ -6 & -3\end{array}\right] \) no coincide con nuestra solución. Por lo tanto, la opción correcta es: d. La matriz \( E=\left[\begin{array}{cc}6 & -6 \\ -16 & -31 \\ 36 & -21\end{array}\right] \) satisface la ecuación planteada.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy