Question
upstudy study bank question image url

\( \lim _ { x \rightarrow + \infty } \sqrt { x ^ { 2 } - 1 } + \sqrt { x ^ { 2 } + 1 } - 2 x \)

Ask by Ramos Conner. in Morocco
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The limit is 0.

Solution

To evaluate   lim₍ₓ→∞₎ [√(x² – 1) + √(x² + 1) – 2x], we first note that as x becomes very large, both √(x² – 1) and √(x² + 1) are approximately x. However, to determine the limit, we need a more precise expansion of these square roots for large x. Step 1. Write the square roots in a convenient form:   √(x² ± 1) = x √(1 ± 1/x²). Step 2. Use the binomial expansion for √(1 + u) when u is small:   √(1 + u) ≈ 1 + u/2 – u²/8 + O(u³). For √(1 – 1/x²):   u = –1/x², so   √(1 – 1/x²) ≈ 1 – 1/(2x²) – 1/(8x⁴) + O(1/x⁶). Thus,   √(x² – 1) ≈ x [1 – 1/(2x²) – 1/(8x⁴)] = x – 1/(2x) – 1/(8x³) + O(1/x⁵). Similarly, for √(1 + 1/x²):   u = 1/x², so   √(1 + 1/x²) ≈ 1 + 1/(2x²) – 1/(8x⁴) + O(1/x⁶). Thus,   √(x² + 1) ≈ x [1 + 1/(2x²) – 1/(8x⁴)] = x + 1/(2x) – 1/(8x³) + O(1/x⁵). Step 3. Add the two approximations:   √(x² – 1) + √(x² + 1) ≈ [x – 1/(2x) – 1/(8x³)] + [x + 1/(2x) – 1/(8x³)]                   = 2x – 1/(4x³) + O(1/x⁵). Step 4. Subtract 2x from the sum:   (2x – 1/(4x³) + …) – 2x = –1/(4x³) + O(1/x⁵). Step 5. Take the limit as x → +∞:   lim₍ₓ→∞₎ (–1/(4x³) + O(1/x⁵)) = 0. Thus, the limit is 0.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the limit \[ \lim _ { x \rightarrow + \infty } \left( \sqrt { x ^ { 2 } - 1 } + \sqrt { x ^ { 2 } + 1 } - 2 x \right), \] we can start by simplifying the expression inside the limit. As \(x\) approaches infinity, we notice that both square roots can be approximated: \[ \sqrt{x^2 - 1} = \sqrt{x^2(1 - \frac{1}{x^2})} = x\sqrt{1 - \frac{1}{x^2}} \approx x\left(1 - \frac{1}{2x^2}\right) = x - \frac{1}{2x} \] and \[ \sqrt{x^2 + 1} = \sqrt{x^2(1 + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x^2}} \approx x\left(1 + \frac{1}{2x^2}\right) = x + \frac{1}{2x}. \] Now substituting these approximations back into the limit expression gives: \[ \sqrt{x^2 - 1} + \sqrt{x^2 + 1} \approx \left(x - \frac{1}{2x}\right) + \left(x + \frac{1}{2x}\right) = 2x. \] Therefore, \[ \sqrt{x^2 - 1} + \sqrt{x^2 + 1} - 2x \approx 2x - 2x = 0. \] To find a more precise limit, we can combine the two square roots after factoring them: \[ \lim_{x \to +\infty} \left(\sqrt{x^2 - 1} + \sqrt{x^2 + 1} - 2x\right) = \lim_{x \to +\infty} \left(\left(\sqrt{x^2 - 1} - x\right) + \left(\sqrt{x^2 + 1} - x\right)\right). \] Calculating each term separately yields: \[ \sqrt{x^2 - 1} - x \approx -\frac{1}{2x} \quad \text{and} \quad \sqrt{x^2 + 1} - x \approx \frac{1}{2x}, \] Thus, \[ \left(\sqrt{x^2 - 1} - x\right) + \left(\sqrt{x^2 + 1} - x\right) \approx -\frac{1}{2x} + \frac{1}{2x} = 0. \] Finally, taking the limit: \[ \lim_{x \to +\infty} \left(-\frac{1}{2x} + \frac{1}{2x}\right) = 0. \] Therefore, \[ \lim_{x \rightarrow + \infty } \sqrt { x ^ { 2 } - 1 } + \sqrt { x ^ { 2 } + 1 } - 2 x = 0. \] The final answer is \[ \boxed{0}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy