Question
upstudy study bank question image url

\[ \begin{array}{l} \text { 12) } \int \frac{x+2}{\sqrt{-x^{2}-4 x}} d x \\ -x-4 x=-(x+2)^{2}+4 \\ -\int \frac{x+2}{\sqrt{-(x+2)^{2}-4}} \\ u^{2}=(x+2)^{2} \quad a^{2}=4 \quad d u=d x \text {. } \\ u=x+2 \quad a=2 \\ \int \frac{u}{\sqrt{-u^{2}-a^{2}}} d u \\ \left.\begin{array}{l} T=-u^{2} \\ d t=-2 u d u \\ d u=\frac{d T}{-2 u} \end{array}\right\}=\int \frac{H}{\sqrt{-T-a^{2}}} \frac{d t}{-2 H t} \\ \equiv \frac{1}{2} \int\left(T-a^{2}\right)^{\frac{1}{2}} d T \\ =-\frac{1}{2}\left(z^{1}\left(T-a^{2}\right)^{\frac{1}{2}}\right) \\ =-\sqrt{T-a^{2}}+c \\ =-\sqrt{-(x+2)^{2}-4} \end{array} \]

Ask by Daniels Goodwin. in Puerto Rico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la integral es \( -\sqrt{-(x+2)^2-4} + c \).

Solution

Para resolver la integral dada, primero se simplifica la expresión dentro de la raíz cuadrada y luego se realiza el cambio de variable para simplificar la integral. Dado que \(-x-4x = -(x+2)^2 + 4\), podemos reescribir la integral como: \[ \int \frac{x+2}{\sqrt{-(x+2)^2-4}} dx \] Luego, se establece el cambio de variable \(u = x+2\) y \(du = dx\), lo que nos da: \[ \int \frac{u}{\sqrt{-u^2-4}} du \] Sustituyendo \(u = x+2\) y \(du = dx\), la integral se convierte en: \[ \int \frac{u}{\sqrt{-u^2-4}} du \] Para simplificar la integral, se establece \(T = -u^2\) y \(dt = -2u du\), lo que nos da: \[ \int \frac{u}{\sqrt{-T-4}} \frac{dt}{-2u} \] Simplificando la integral, obtenemos: \[ \frac{1}{2} \int (T-4)^{\frac{1}{2}} dt \] Finalmente, se resuelve la integral y se obtiene: \[ -\frac{1}{2} \left( \frac{2}{3} (T-4)^{\frac{3}{2}} \right) + c \] Sustituyendo nuevamente \(T = -(x+2)^2\), obtenemos la solución final: \[ -\sqrt{-(x+2)^2-4} + c \] Por lo tanto, la solución de la integral dada es: \[ -\sqrt{-(x+2)^2-4} + c \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Did you know that improper integrals and the use of substitutions, like the one you see here, date back to the studies of calculus by pioneers such as Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century? Their work laid the groundwork for understanding areas under curves, leading to modern calculus's development. Integral calculus, in particular, allows us to find solutions to a variety of practical problems, from calculating areas to modeling physical phenomena! When tackling integrals involving substitutions, it's easy to make mistakes with variable changes or limits, especially when squaring terms or applying chain and product rules. Always double-check that your differential terms match correctly during substitutions. If you find yourself dealing with a square root, remember to consider simplifying before diving too deep into complex transformations - sometimes, simpler is better!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy