Question
upstudy study bank question image url

1. El punto P 1 tiene su abscisa igual a su ordenada. Si las coordenadas de P 2 son: \( (2 ; 8) \) y la distancia \( \mathrm{P}_{1} \mathrm{P}_{2} \) vale 6 unidades, halle las coordenadas de P1.

Ask by Davison Cook. in Ecuador
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las coordenadas de \( P_1 \) son \( (8, 8) \) y \( (2, 2) \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Mind Expander

Para resolver este problema, sabemos que el punto \( P_1 \) tiene sus coordenadas igualadas, es decir, \( P_1 = (a, a) \). Utilizando la fórmula de distancia entre dos puntos en el plano: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Sustituyendo las coordenadas de \( P_1 \) y \( P_2 \) y la distancia: \[ 6 = \sqrt{(2 - a)^2 + (8 - a)^2} \] Elevando al cuadrado ambos lados: \[ 36 = (2 - a)^2 + (8 - a)^2 \] Expandiendo y simplificando: \[ 36 = (4 - 4a + a^2) + (64 - 16a + a^2) \] \[ 36 = 68 - 20a + 2a^2 \] \[ 0 = 2a^2 - 20a + 32 \] \[ 0 = a^2 - 10a + 16 \] Resolviendo esta ecuación cuadrática usando la fórmula cuadrática \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1} = \frac{10 \pm \sqrt{100 - 64}}{2} = \frac{10 \pm \sqrt{36}}{2} \] \[ a = \frac{10 \pm 6}{2} \] Esto da dos soluciones: \[ a = \frac{16}{2} = 8 \quad \text{o} \quad a = \frac{4}{2} = 2 \] Por lo tanto, las coordenadas de \( P_1 \) son \( (8, 8) \) o \( (2, 2) \). Sin embargo, dado que \( P_2 \) es \( (2, 8) \), la solución \( (2, 2) \) no es válida. Así que las coordenadas de \( P_1 \) son \( (8, 8) \).

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy