Given the following functions, find each: \( f(x)=x^{2}+3 x-28 \) \( g(x)=x+7 \) \( (f+g)(x)=\square \) \( (f-g)(x)=\square \) \( (f \cdot g)(x)=\square \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Beyond the Answer
To find the requested functions, we will perform the operations indicated with \( f(x) \) and \( g(x) \). 1. **Addition \( (f+g)(x) \)**: \[ (f+g)(x) = f(x) + g(x) = (x^2 + 3x - 28) + (x + 7) = x^2 + 3x + x - 28 + 7 = x^2 + 4x - 21 \] 2. **Subtraction \( (f-g)(x) \)**: \[ (f-g)(x) = f(x) - g(x) = (x^2 + 3x - 28) - (x + 7) = x^2 + 3x - 28 - x - 7 = x^2 + 2x - 35 \] 3. **Multiplication \( (f \cdot g)(x) \)**: \[ (f \cdot g)(x) = f(x) \cdot g(x) = (x^2 + 3x - 28)(x + 7) \] Now expanding this: \[ = x^2 \cdot (x + 7) + 3x \cdot (x + 7) - 28 \cdot (x + 7) \] \[ = x^3 + 7x^2 + 3x^2 + 21x - 28x - 196 \] \[ = x^3 + 10x^2 - 7x - 196 \] So the final results are: - \( (f+g)(x) = x^2 + 4x - 21 \) - \( (f-g)(x) = x^2 + 2x - 35 \) - \( (f \cdot g)(x) = x^3 + 10x^2 - 7x - 196 \)