Question

\( \int _{0}^{1}\sin (t^{2}) d t=t^{2}-\frac{t^{6}}{3!}+\frac{t^{10}}{5!}-\frac{t^{14}}{7!} \)

Ask by Bright Bob. in Russia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Интеграл \( \int _{0}^{1}\sin (t^{2}) d t \) равен \( \frac{23356.27}{75600} \).

Solution

Давайте решим интеграл \( \int _{0}^{1}\sin (t^{2}) d t \) с использованием разложения в ряд Тейлора для функции \( \sin(x) \). 1. Разложение функции \( \sin(x) \) в ряд Тейлора: \[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \] Подставим \( x = t^2 \): \[ \sin(t^2) = t^2 - \frac{(t^2)^3}{3!} + \frac{(t^2)^5}{5!} - \frac{(t^2)^7}{7!} + \ldots \] Это упрощается до: \[ \sin(t^2) = t^2 - \frac{t^6}{3!} + \frac{t^{10}}{5!} - \frac{t^{14}}{7!} + \ldots \] 2. Теперь интегрируем каждое слагаемое от 0 до 1: \[ \int_0^1 \sin(t^2) dt = \int_0^1 \left( t^2 - \frac{t^6}{3!} + \frac{t^{10}}{5!} - \frac{t^{14}}{7!} + \ldots \right) dt \] 3. Интегрируем каждое слагаемое: - Для \( t^2 \): \[ \int_0^1 t^2 dt = \left[ \frac{t^3}{3} \right]_0^1 = \frac{1}{3} \] - Для \( -\frac{t^6}{3!} \): \[ -\frac{1}{3!} \int_0^1 t^6 dt = -\frac{1}{6} \left[ \frac{t^7}{7} \right]_0^1 = -\frac{1}{6 \cdot 7} = -\frac{1}{42} \] - Для \( \frac{t^{10}}{5!} \): \[ \frac{1}{5!} \int_0^1 t^{10} dt = \frac{1}{120} \left[ \frac{t^{11}}{11} \right]_0^1 = \frac{1}{120 \cdot 11} = \frac{1}{1320} \] - Для \( -\frac{t^{14}}{7!} \): \[ -\frac{1}{7!} \int_0^1 t^{14} dt = -\frac{1}{5040} \left[ \frac{t^{15}}{15} \right]_0^1 = -\frac{1}{5040 \cdot 15} = -\frac{1}{75600} \] 4. Теперь сложим все результаты: \[ \int_0^1 \sin(t^2) dt = \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} - \frac{1}{75600} \] 5. Приведем к общему знаменателю и вычислим: - Общий знаменатель: 75600 - Приведем каждое слагаемое: \[ \frac{1}{3} = \frac{25200}{75600}, \quad -\frac{1}{42} = -\frac{1800}{75600}, \quad \frac{1}{1320} = \frac{57.27}{75600}, \quad -\frac{1}{75600} = -\frac{1}{75600} \] 6. Сложим: \[ \frac{25200 - 1800 + 57.27 - 1}{75600} = \frac{23356.27}{75600} \] Таким образом, интеграл \( \int _{0}^{1}\sin (t^{2}) d t \) равен \( \frac{23356.27}{75600} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

The integral \( \int_{0}^{1} \sin(t^{2}) dt \) can be evaluated using the series expansion of \( \sin(x) \). By substituting \( x = t^2 \), we can express \( \sin(t^2) \) as a Taylor series: \( \sin(t^2) = t^2 - \frac{(t^2)^{3}}{3!} + \frac{(t^2)^{5}}{5!} - \frac{(t^2)^{7}}{7!} + \cdots \). When integrated term by term from 0 to 1, this series gives an approach to approximating the value of the integral. As this integral converges to a numerical value, it serves as a practical example of how infinite series can provide solutions to problems that are not trivial to evaluate directly. Integrals like this one have real-world applications in physics, particularly in wave mechanics and signal processing, where functions like \( \sin(t^2) \) might model a wave's behavior.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy