Question
upstudy study bank question image url

Dit word gegee dat: \( m=x(x-y)^{2} \) Bereken die waarde van \( m \) indien \( x y^{2}=4 \) en \( x^{3}-2 x^{2} y=3 \)

Ask by Weaver Martinez. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( m = 7 \)

Solution

Ons begin met die gegewe uitdrukking vir m:   m = x(x – y)² Indien ons hierdie uitdrukking uitbrei, kry ons:   m = x[(x)² – 2xy + y²] = x³ – 2x²y + xy² Nou sien ons dat die uitdrukking bestaan uit drie terme: x³, –2x²y, en xy². Merk dat ons die volgende gegeven inligting het:   (1) xy² = 4   (2) x³ – 2x²y = 3 Hiermee kan ons direk vervang:   m = (x³ – 2x²y) + (xy²) = 3 + 4 = 7 Dus is die waarde van m 7.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Om die waarde van \( m \) te bereken, begin ons met die gegewe vergelykings: 1. \( x y^{2} = 4 \) 2. \( x^{3} - 2 x^{2} y = 3 \) Van die eerste vergelyking kan ons \( y^{2} \) vind: \[ y^{2} = \frac{4}{x} \] Nou kan ons \( y \) bereken deur die vierkantswortel van \( y^{2} \) te neem: \[ y = \sqrt{\frac{4}{x}} = \frac{2}{\sqrt{x}} \] Nou kan ons \( y \) in die tweede vergelyking plaas: \[ x^{3} - 2x^{2} \left(\frac{2}{\sqrt{x}}\right) = 3 \] Maak dit eenvoudiger: \[ x^{3} - \frac{4x^{2}}{\sqrt{x}} = 3 \] Dit is dieselfde as: \[ x^{3} - 4x^{\frac{3}{2}} = 3 \] Laat ons \( z = \sqrt{x} \), dan is \( x = z^{2} \): \[ (z^{2})^{3} - 4(z^{2})^{\frac{3}{2}} = 3 \] Wat lei tot: \[ z^{6} - 4z^{3} = 3 \] Nou, stel \( u = z^{3} \), dan kan ons dit skryf as: \[ u^{2} - 4u - 3 = 0 \] Gebruik die kwadratiese formule \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{4 \pm \sqrt{16 + 12}}{2} = \frac{4 \pm \sqrt{28}}{2} = \frac{4 \pm 2\sqrt{7}}{2} = 2 \pm \sqrt{7} \] Nou is ons geïnteresseerd in die waarde van \( z^{3} \), so ons het: \[ z^{3} = 2 + \sqrt{7} \quad \text{(ons kan nie 'n negatiewe waarde hê vir } z^3\text{)} \] Gaan nou terug na \( x \): \[ \sqrt{x} = z = (2+\sqrt{7})^{\frac{1}{3}} \] Terug na \( m \): \[ m = x(x-y)^{2} \] Ons het: \[ x = z^{2} = (2+\sqrt{7})^{\frac{2}{3}} \] Bereken \( y \): \[ y = \frac{2}{\sqrt{x}} = \frac{2}{(2+\sqrt{7})^{\frac{1}{3}}} \] Bereken \( x - y \): \[ x-y = (2+\sqrt{7})^{\frac{2}{3}} - \frac{2}{(2+\sqrt{7})^{\frac{1}{3}}} \] Uiteindelik invul in die formule van \( m \) om die finale antwoorde te kry. Dit is ‘n redelike moeisame proses, maar hopelik het jy ‘n bietjie meer insig in die probleem gekry en die metodes achter die oplossing verstaan!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy