Question
upstudy study bank question image url

Deber de mutematica - Resolver las siguientes ecuacioses a riicundo va cormula seneral sigvientes ecuaciobes \( \frac{x=-b \pm \sqrt{b^{2}-4 a c}}{2 a} \) a) \( \left.16 x^{2}-4 x-1\right]=0 \)

Ask by Best Chan. in Ecuador
Jan 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las soluciones son \(x = \frac{1-\sqrt{5}}{8}\) y \(x = \frac{1+\sqrt{5}}{8}\).

Solution

Solve the equation \( 16x^2 - 4x - 1 = 0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(16x^{2}-4x-1=0\) - step1: Solve using the quadratic formula: \(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 16\left(-1\right)}}{2\times 16}\) - step2: Simplify the expression: \(x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\times 16\left(-1\right)}}{32}\) - step3: Simplify the expression: \(x=\frac{4\pm \sqrt{80}}{32}\) - step4: Simplify the expression: \(x=\frac{4\pm 4\sqrt{5}}{32}\) - step5: Separate into possible cases: \(\begin{align}&x=\frac{4+4\sqrt{5}}{32}\\&x=\frac{4-4\sqrt{5}}{32}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=\frac{1+\sqrt{5}}{8}\\&x=\frac{4-4\sqrt{5}}{32}\end{align}\) - step7: Simplify the expression: \(\begin{align}&x=\frac{1+\sqrt{5}}{8}\\&x=\frac{1-\sqrt{5}}{8}\end{align}\) - step8: Rewrite: \(x_{1}=\frac{1-\sqrt{5}}{8},x_{2}=\frac{1+\sqrt{5}}{8}\) Las soluciones de la ecuación \(16x^2 - 4x - 1 = 0\) son \(x_{1} = \frac{1-\sqrt{5}}{8}\) y \(x_{2} = \frac{1+\sqrt{5}}{8}\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

¡Vamos a resolver esa ecuación cuadrática! Primero, identificamos los coeficientes \(a\), \(b\) y \(c\) de la ecuación \(16x^2 - 4x - 1 = 0\). Aquí, \(a = 16\), \(b = -4\) y \(c = -1\). Ahora, aplicamos la fórmula general que mencionaste: \[ x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 16 \cdot (-1)}}{2 \cdot 16} \] Resolviendo: \[ x = \frac{4 \pm \sqrt{16 + 64}}{32} \] \[ x = \frac{4 \pm \sqrt{80}}{32} \] \[ x = \frac{4 \pm 4\sqrt{5}}{32} \] \[ x = \frac{1 \pm \sqrt{5}}{8} \] Así que las soluciones son \(x = \frac{1 + \sqrt{5}}{8}\) y \(x = \frac{1 - \sqrt{5}}{8}\). Por otro lado, resolver ecuaciones cuadráticas como esta permite comprender mejor cómo los componentes afectan las soluciones. Observa que factores como los coeficientes \(a\), \(b\) y \(c\) tienen un impactante rol en la forma y la posición de la parábola en el plano cartesiano. ¡Las matemáticas son como un rompecabezas emocionante, y cada pieza tiene su importancia!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy