Activity - Given: \( f(x)=-x+2, \quad g(x)=2 x^{2}-1, \quad h(x)=\frac{1}{x} \) Determine: \( \begin{array}{lllll}\text { a) } f(-1) & \text { b) } g(a) & \text { c) } h\left(\frac{1}{2}\right) & \text { d) } f(a+2) & \text { e) } f(a)+g(a)\end{array} \quad \) f) \( h\left(\frac{1}{x}\right) \) \( \begin{array}{llll}\text { E) } g(-2)+h(2)-f(3) & \text { h] } f(x) \times g(0) & \text { i) } f[g(0)] & \text { ] } g[h(-2)]\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Let's dive into these functions and see what we can find! For \( f(-1) \), we plug in \(-1\) into \( f(x) = -x + 2 \). Thus, \( f(-1) = -(-1) + 2 = 1 + 2 = 3 \). Next, for \( g(a) \), we use \( g(x) = 2x^2 - 1 \). Therefore, \( g(a) = 2a^2 - 1 \). Now, substituting for \( h\left(\frac{1}{2}\right) \) using \( h(x) = \frac{1}{x} \), we have \( h\left(\frac{1}{2}\right) = \frac{1}{\frac{1}{2}} = 2 \). For \( d) \) \( f(a+2) \), we substitute \( a+2 \) into \( f(x) \): \( f(a+2) = -(a+2) + 2 = -a - 2 + 2 = -a \). For \( e) \) \( f(a) + g(a) \), we already calculated \( f(a) = -a + 2 \) and \( g(a) = 2a^2 - 1 \), so adding those gives us \( (-a + 2) + (2a^2 - 1) = 2a^2 - a + 1 \). For \( f(g(0)) \), we need \( g(0) = 2(0)^2 - 1 = -1 \), which means we need to find \( f(-1) \). Since we calculated \( f(-1) = 3 \), we have \( f(g(0)) = 3 \). Next is \( g[h(-2)] \). First, we need to find \( h(-2) = \frac{1}{-2} = -\frac{1}{2} \), then \( g\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^2 - 1 = 2 \cdot \frac{1}{4} - 1 = \frac{1}{2} - 1 = -\frac{1}{2} \). Lastly, let’s check \( g(-2) + h(2) - f(3) \): - \( g(-2) = 2(-2)^2 - 1 = 8 - 1 = 7 \) - \( h(2) = \frac{1}{2} \) - \( f(3) = -3 + 2 = -1 \) So, combining them gives: \( 7 + \frac{1}{2} - (-1) = 7 + \frac{1}{2} + 1 = 8.5 \) or \( \frac{17}{2} \) in fractional form. So here are your answers summarized: - \( f(-1) = 3 \) - \( g(a) = 2a^2 - 1 \) - \( h\left(\frac{1}{2}\right) = 2 \) - \( f(a+2) = -a \) - \( f(a) + g(a) = 2a^2 - a + 1 \) - \( h\left(\frac{1}{x}\right) = x \) - \( g(-2) + h(2) - f(3) = \frac{17}{2} \) - \( f[g(0)] = 3 \) - \( g[h(-2)] = -\frac{1}{2} \)