Question
upstudy study bank question image url

e Determine, without using a calculator, the value of \( 1.1 \cos 150^{\circ} \cdot \cos \left(-28^{\circ}\right)+\cos 60^{\circ} \cdot \cos 62^{\circ} \) \( 1.2 \sin \left(85^{\circ}+\theta\right) \cdot \cos \left(25^{\circ}+\theta\right)-\cos \left(85^{\circ}+\theta\right) \cdot \sin \left(25^{\circ}+\theta\right) \) \( 1.3 \cos \left(A+55^{\circ}\right) \cos \left(A+10^{\circ}\right)+\sin \left(A+55^{\circ}\right) \sin \left(A+10^{\circ}\right) \) \( 1.4 \frac{\sin 21^{\circ} \cos w+\cos 21^{\circ} \sin w}{\sin \left(w+21^{\circ}\right)}-\tan ^{2} \beta \cdot \cos ^{2} \beta \).

Ask by Hills Craig. in South Africa
Feb 27,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1.1: \( -\frac{\sqrt{3}}{2} \cdot \cos(28^{\circ}) + \frac{1}{2} \cdot \cos(62^{\circ}) \) 1.2: \( \frac{\sqrt{3}}{2} \) 1.3: \( \frac{\sqrt{2}}{2} \) 1.4: \( 1 - \tan^2 \beta \cdot \cos^2 \beta \)

Solution

Let's solve each part step by step. ### 1.1 \( 1.1 \cos 150^{\circ} \cdot \cos \left(-28^{\circ}\right)+\cos 60^{\circ} \cdot \cos 62^{\circ} \) **Step 1: Calculate \( \cos 150^{\circ} \)** Using the cosine of an angle in the second quadrant: \[ \cos 150^{\circ} = -\cos(180^{\circ} - 30^{\circ}) = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2} \] **Step 2: Calculate \( \cos(-28^{\circ}) \)** Using the property of cosine: \[ \cos(-28^{\circ}) = \cos(28^{\circ} \] **Step 3: Calculate \( \cos 60^{\circ} \)** \[ \cos 60^{\circ} = \frac{1}{2} \] **Step 4: Calculate \( \cos 62^{\circ} \)** This value remains as is since we don't need to calculate it explicitly. **Step 5: Combine the results** Now substituting back into the expression: \[ 1.1 = -\frac{\sqrt{3}}{2} \cdot \cos(28^{\circ}) + \frac{1}{2} \cdot \cos(62^{\circ}) \] ### 1.2 \( 1.2 \sin \left(85^{\circ}+\theta\right) \cdot \cos \left(25^{\circ}+\theta\right)-\cos \left(85^{\circ}+\theta\right) \cdot \sin \left(25^{\circ}+\theta\right) \) **Step 1: Use the sine subtraction formula** This expression can be simplified using the sine subtraction formula: \[ \sin(A) \cos(B) - \cos(A) \sin(B) = \sin(A - B) \] Let \( A = 85^{\circ} + \theta \) and \( B = 25^{\circ} + \theta \): \[ 1.2 = \sin\left((85^{\circ} + \theta) - (25^{\circ} + \theta)\right) = \sin(60^{\circ}) \] **Step 2: Calculate \( \sin(60^{\circ}) \)** \[ \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \] ### 1.3 \( 1.3 \cos \left(A+55^{\circ}\right) \cos \left(A+10^{\circ}\right)+\sin \left(A+55^{\circ}\right) \sin \left(A+10^{\circ}\right) \) **Step 1: Use the cosine addition formula** This expression can be simplified using the cosine addition formula: \[ \cos(A) \cos(B) + \sin(A) \sin(B) = \cos(A - B) \] Let \( A = A + 55^{\circ} \) and \( B = A + 10^{\circ} \): \[ 1.3 = \cos\left((A + 55^{\circ}) - (A + 10^{\circ})\right) = \cos(45^{\circ}) \] **Step 2: Calculate \( \cos(45^{\circ}) \)** \[ \cos(45^{\circ}) = \frac{\sqrt{2}}{2} \] ### 1.4 \( 1.4 \frac{\sin 21^{\circ} \cos w+\cos 21^{\circ} \sin w}{\sin \left(w+21^{\circ}\right)}-\tan ^{2} \beta \cdot \cos ^{2} \beta \) **Step 1: Use the sine addition formula** The first part can be simplified using the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] Thus, \[ \frac{\sin(21^{\circ} + w)}{\sin(w + 21^{\circ})} = 1 \] **Step 2: The second part remains as is** So we have: \[ 1.4 = 1 - \tan^2 \beta \cdot \cos^2 \beta \] ### Final Results 1.1: \( -\frac{\sqrt{3}}{2} \cdot \cos(28^{\circ}) + \frac{1}{2} \cdot \cos(62^{\circ}) \) 1.2: \( \frac{\sqrt{3}}{2} \) 1.3: \( \frac{\sqrt{2}}{2} \) 1.4: \( 1 - \tan^2 \beta \cdot \cos^2 \beta \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the value of \( 1.1 \cos 150^{\circ} \cdot \cos \left(-28^{\circ}\right) + \cos 60^{\circ} \cdot \cos 62^{\circ} \), let's analyze each part. First, \( \cos 150^{\circ} = -\frac{\sqrt{3}}{2} \) and \( \cos(-28^{\circ}) = \cos(28^{\circ}) \). The second part involves \( \cos 60^{\circ} = \frac{1}{2} \) and \( \cos 62^{\circ} \) can be left as is. The overall expression simplifies neatly when substituting these values! For \( 1.2 \sin(85^{\circ} + \theta) \cdot \cos(25^{\circ} + \theta) - \cos(85^{\circ} + \theta) \cdot \sin(25^{\circ} + \theta) \), use the sine subtraction identity. It turns into \( \sin\left((85^{\circ} + \theta) - (25^{\circ} + \theta)\right) = \sin(60^{\circ}) \), giving you the value \( \frac{\sqrt{3}}{2} \). In solving \( 1.3 \cos(A + 55^{\circ}) \cos(A + 10^{\circ}) + \sin(A + 55^{\circ}) \sin(A + 10^{\circ}) \), notice that this uses the cosine of angle difference identity. It simplifies down to \( \cos\left((A + 10^{\circ}) - (A + 55^{\circ})\right) = \cos(-45^{\circ}) \), resulting in \( \frac{\sqrt{2}}{2} \). Lastly, for \( 1.4 \frac{\sin 21^{\circ} \cos w + \cos 21^{\circ} \sin w}{\sin(w + 21^{\circ})} - \tan^2 \beta \cdot \cos^2 \beta \), use the sine angle addition formula. This simplifies to \( 1 - \tan^2 \beta \cdot \cos^2 \beta \). Understanding common trigonometric identities can really help streamline these calculations!

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy