Answer
a) \( \frac{4x^2 + 6x - 1}{2x^2} \)
b) \( \frac{5pq - 24q^2 + 24p^2}{6pq} \)
c) \( 2a + 1 \)
d) \( -\frac{44}{15} \)
e) \( \frac{19}{6} \)
f) \( \frac{8x + 53}{12x^2} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(2-\frac{1}{2x^{2}}+\frac{3}{x}\)
- step1: Reduce fractions to a common denominator:
\(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{x\times 2x}\)
- step2: Reorder the terms:
\(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{2x\times x}\)
- step3: Multiply the terms:
\(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{2x^{2}}\)
- step4: Transform the expression:
\(\frac{2\times 2x^{2}-1+3\times 2x}{2x^{2}}\)
- step5: Multiply the terms:
\(\frac{4x^{2}-1+3\times 2x}{2x^{2}}\)
- step6: Multiply the terms:
\(\frac{4x^{2}-1+6x}{2x^{2}}\)
Calculate or simplify the expression \( (2*x + 3)/x + (7/(4*x^2)) - ((4*x + 1)/3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2x+3\right)}{x}+\frac{7}{4x^{2}}-\left(\frac{\left(4x+1\right)}{3}\right)\)
- step1: Remove the parentheses:
\(\frac{2x+3}{x}+\frac{7}{4x^{2}}-\left(\frac{4x+1}{3}\right)\)
- step2: Remove the parentheses:
\(\frac{2x+3}{x}+\frac{7}{4x^{2}}-\frac{4x+1}{3}\)
- step3: Reduce fractions to a common denominator:
\(\frac{\left(2x+3\right)\times 4\times 3x}{x\times 4\times 3x}+\frac{7\times 3}{4x^{2}\times 3}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\)
- step4: Multiply the numbers:
\(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{4x^{2}\times 3}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\)
- step5: Multiply the numbers:
\(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\)
- step6: Multiply the numbers:
\(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x\times x}\)
- step7: Multiply the terms:
\(\frac{\left(2x+3\right)\times 4\times 3x}{12x^{2}}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x\times x}\)
- step8: Multiply the terms:
\(\frac{\left(2x+3\right)\times 4\times 3x}{12x^{2}}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x^{2}}\)
- step9: Transform the expression:
\(\frac{\left(2x+3\right)\times 4\times 3x+7\times 3-\left(4x+1\right)\times 4x\times x}{12x^{2}}\)
- step10: Multiply the terms:
\(\frac{24x^{2}+36x+7\times 3-\left(4x+1\right)\times 4x\times x}{12x^{2}}\)
- step11: Multiply the numbers:
\(\frac{24x^{2}+36x+21-\left(4x+1\right)\times 4x\times x}{12x^{2}}\)
- step12: Multiply the terms:
\(\frac{24x^{2}+36x+21-\left(16x^{3}+4x^{2}\right)}{12x^{2}}\)
- step13: Calculate:
\(\frac{20x^{2}+36x+21-16x^{3}}{12x^{2}}\)
Calculate or simplify the expression \( (2/3) + ((3*x + 2)/x) - ((x + 4)/(2*x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{3}+\left(\frac{\left(3x+2\right)}{x}\right)-\left(\frac{\left(x+4\right)}{2x}\right)\)
- step1: Remove the parentheses:
\(\frac{2}{3}+\left(\frac{3x+2}{x}\right)-\left(\frac{x+4}{2x}\right)\)
- step2: Remove the parentheses:
\(\frac{2}{3}+\frac{3x+2}{x}-\left(\frac{x+4}{2x}\right)\)
- step3: Remove the parentheses:
\(\frac{2}{3}+\frac{3x+2}{x}-\frac{x+4}{2x}\)
- step4: Reduce fractions to a common denominator:
\(\frac{2\times 2x}{3\times 2x}+\frac{\left(3x+2\right)\times 3\times 2}{x\times 3\times 2}-\frac{\left(x+4\right)\times 3}{2x\times 3}\)
- step5: Multiply the numbers:
\(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{x\times 3\times 2}-\frac{\left(x+4\right)\times 3}{2x\times 3}\)
- step6: Multiply the numbers:
\(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{6x}-\frac{\left(x+4\right)\times 3}{2x\times 3}\)
- step7: Multiply the numbers:
\(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{6x}-\frac{\left(x+4\right)\times 3}{6x}\)
- step8: Transform the expression:
\(\frac{2\times 2x+\left(3x+2\right)\times 3\times 2-\left(x+4\right)\times 3}{6x}\)
- step9: Multiply the terms:
\(\frac{4x+\left(3x+2\right)\times 3\times 2-\left(x+4\right)\times 3}{6x}\)
- step10: Multiply the terms:
\(\frac{4x+18x+12-\left(x+4\right)\times 3}{6x}\)
- step11: Multiply the terms:
\(\frac{4x+18x+12-\left(3x+12\right)}{6x}\)
- step12: Calculate:
\(\frac{19x}{6x}\)
- step13: Reduce the fraction:
\(\frac{19}{6}\)
Calculate or simplify the expression \( (5/6) - (4*q/p) + (4*p/q) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5}{6}-\frac{4q}{p}+\frac{4p}{q}\)
- step1: Reduce fractions to a common denominator:
\(\frac{5pq}{6pq}-\frac{4q\times 6q}{p\times 6q}+\frac{4p\times 6p}{q\times 6p}\)
- step2: Reorder the terms:
\(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{q\times 6p}\)
- step3: Reorder the terms:
\(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{6qp}\)
- step4: Rewrite the expression:
\(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{6pq}\)
- step5: Transform the expression:
\(\frac{5pq-4q\times 6q+4p\times 6p}{6pq}\)
- step6: Multiply the terms:
\(\frac{5pq-24q^{2}+4p\times 6p}{6pq}\)
- step7: Multiply the terms:
\(\frac{5pq-24q^{2}+24p^{2}}{6pq}\)
Calculate or simplify the expression \( (5*x + 2)/5 - (3*x + 10)/3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(5x+2\right)}{5}-\frac{\left(3x+10\right)}{3}\)
- step1: Remove the parentheses:
\(\frac{5x+2}{5}-\frac{3x+10}{3}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(5x+2\right)\times 3}{5\times 3}-\frac{\left(3x+10\right)\times 5}{3\times 5}\)
- step3: Multiply the numbers:
\(\frac{\left(5x+2\right)\times 3}{15}-\frac{\left(3x+10\right)\times 5}{3\times 5}\)
- step4: Multiply the numbers:
\(\frac{\left(5x+2\right)\times 3}{15}-\frac{\left(3x+10\right)\times 5}{15}\)
- step5: Transform the expression:
\(\frac{\left(5x+2\right)\times 3-\left(3x+10\right)\times 5}{15}\)
- step6: Multiply the terms:
\(\frac{15x+6-\left(3x+10\right)\times 5}{15}\)
- step7: Multiply the terms:
\(\frac{15x+6-\left(15x+50\right)}{15}\)
- step8: Calculate:
\(\frac{-44}{15}\)
- step9: Rewrite the fraction:
\(-\frac{44}{15}\)
Calculate or simplify the expression \( (8*a^2 + 4*a)/(4*a) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(8a^{2}+4a\right)}{4a}\)
- step1: Remove the parentheses:
\(\frac{8a^{2}+4a}{4a}\)
- step2: Factor:
\(\frac{4a\left(2a+1\right)}{4a}\)
- step3: Reduce the fraction:
\(2a+1\)
Let's simplify each expression step by step:
### a) \( 2 - \frac{1}{2x^2} + \frac{3}{x} \)
1. **Common Denominator**: The common denominator for the terms is \( 2x^2 \).
2. **Rewrite Each Term**:
- \( 2 = \frac{4x^2}{2x^2} \)
- \( -\frac{1}{2x^2} \) remains the same.
- \( \frac{3}{x} = \frac{6x}{2x^2} \)
3. **Combine**:
\[
\frac{4x^2 - 1 + 6x}{2x^2}
\]
**Final Result**: \( \frac{4x^2 + 6x - 1}{2x^2} \)
---
### b) \( \frac{5}{6} - \frac{4q}{p} + \frac{4p}{q} \)
1. **Common Denominator**: The common denominator is \( 6pq \).
2. **Rewrite Each Term**:
- \( \frac{5}{6} = \frac{5pq}{6pq} \)
- \( -\frac{4q}{p} = -\frac{24q^2}{6pq} \)
- \( \frac{4p}{q} = \frac{24p^2}{6pq} \)
3. **Combine**:
\[
\frac{5pq - 24q^2 + 24p^2}{6pq}
\]
**Final Result**: \( \frac{5pq - 24q^2 + 24p^2}{6pq} \)
---
### c) \( \frac{8a^2 + 4a}{4a} \)
1. **Simplify**:
\[
\frac{8a^2}{4a} + \frac{4a}{4a} = 2a + 1
\]
**Final Result**: \( 2a + 1 \)
---
### d) \( \frac{5x + 2}{5} - \frac{3x + 10}{3} \)
1. **Common Denominator**: The common denominator is \( 15 \).
2. **Rewrite Each Term**:
- \( \frac{5x + 2}{5} = \frac{3(5x + 2)}{15} = \frac{15x + 6}{15} \)
- \( -\frac{3x + 10}{3} = -\frac{5(3x + 10)}{15} = -\frac{15x + 50}{15} \)
3. **Combine**:
\[
\frac{15x + 6 - 15x - 50}{15} = \frac{-44}{15}
\]
**Final Result**: \( -\frac{44}{15} \)
---
### e) \( \frac{2}{3} + \frac{3x + 2}{x} - \frac{x + 4}{2x} \)
1. **Common Denominator**: The common denominator is \( 6x \).
2. **Rewrite Each Term**:
- \( \frac{2}{3} = \frac{4x}{6x} \)
- \( \frac{3x + 2}{x} = \frac{6(3x + 2)}{6x} = \frac{18x + 12}{6x} \)
- \( -\frac{x + 4}{2x} = -\frac{3(x + 4)}{6x} = -\frac{3x + 12}{6x} \)
3. **Combine**:
\[
\frac{4x + 18x + 12 - 3x - 12}{6x} = \frac{19x}{6x} = \frac{19}{6}
\]
**Final Result**: \( \frac{19}{6} \)
---
### f) \( \frac{2x + 3}{x} + \frac{7}{4x^2} - \frac{4x + 1}{3} \)
1. **Common Denominator**: The common denominator is \( 12x^2 \).
2. **Rewrite Each Term**:
- \( \frac{2x + 3}{x} = \frac{12(2x + 3)}{12x^2} = \frac{24x + 36}{12x^2} \)
- \( \frac{7}{4x^2} = \frac{21}{12x^2} \)
- \( -\frac{4x + 1}{3} = -\frac{4(4x + 1)}{12x^2} = -\frac{16x + 4}{12x^2} \)
3. **Combine**:
\[
\frac{24x + 36 + 21 - 16x - 4}{12x^2} = \frac{8x + 53}{12x^2}
\]
**Final Result**: \( \frac{8x + 53}{12x^2} \)
---
### Summary of Results:
- a) \( \frac{4x^2 + 6x - 1}{2x^2} \)
- b) \( \frac{5pq - 24q^2 + 24p^2}{6pq} \)
- c) \( 2a + 1 \)
- d) \( -\frac{44}{15} \)
- e) \( \frac{19}{6} \)
- f) \( \frac{8x + 53}{12x^2} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution