Question
upstudy study bank question image url

Exercise 5: Simplify the following (you may assume that denominators are non-zero): \( \begin{array}{lll}\text { a) } 2-\frac{1}{2 x^{2}}+\frac{3}{x} & \text { c) } \frac{8 a^{2}+4 a}{4 a} & \text { e) } \frac{2}{3}+\frac{3 x+2}{x}-\frac{x+4}{2 x} \\ \text { b) } \frac{5}{6}-\frac{4 q}{p}+\frac{4 p}{q} & \text { d) } \frac{5 x+2}{5}-\frac{3 x+10}{3} & \text { f) } \frac{2 x+3}{x}+\frac{7}{4 x^{2}}-\frac{4 x+1}{3}\end{array} \)

Ask by Schmidt Fitzgerald. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( \frac{4x^2 + 6x - 1}{2x^2} \) b) \( \frac{5pq - 24q^2 + 24p^2}{6pq} \) c) \( 2a + 1 \) d) \( -\frac{44}{15} \) e) \( \frac{19}{6} \) f) \( \frac{8x + 53}{12x^2} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(2-\frac{1}{2x^{2}}+\frac{3}{x}\) - step1: Reduce fractions to a common denominator: \(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{x\times 2x}\) - step2: Reorder the terms: \(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{2x\times x}\) - step3: Multiply the terms: \(\frac{2\times 2x^{2}}{2x^{2}}-\frac{1}{2x^{2}}+\frac{3\times 2x}{2x^{2}}\) - step4: Transform the expression: \(\frac{2\times 2x^{2}-1+3\times 2x}{2x^{2}}\) - step5: Multiply the terms: \(\frac{4x^{2}-1+3\times 2x}{2x^{2}}\) - step6: Multiply the terms: \(\frac{4x^{2}-1+6x}{2x^{2}}\) Calculate or simplify the expression \( (2*x + 3)/x + (7/(4*x^2)) - ((4*x + 1)/3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2x+3\right)}{x}+\frac{7}{4x^{2}}-\left(\frac{\left(4x+1\right)}{3}\right)\) - step1: Remove the parentheses: \(\frac{2x+3}{x}+\frac{7}{4x^{2}}-\left(\frac{4x+1}{3}\right)\) - step2: Remove the parentheses: \(\frac{2x+3}{x}+\frac{7}{4x^{2}}-\frac{4x+1}{3}\) - step3: Reduce fractions to a common denominator: \(\frac{\left(2x+3\right)\times 4\times 3x}{x\times 4\times 3x}+\frac{7\times 3}{4x^{2}\times 3}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\) - step4: Multiply the numbers: \(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{4x^{2}\times 3}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\) - step5: Multiply the numbers: \(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{3\times 4x\times x}\) - step6: Multiply the numbers: \(\frac{\left(2x+3\right)\times 4\times 3x}{12x\times x}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x\times x}\) - step7: Multiply the terms: \(\frac{\left(2x+3\right)\times 4\times 3x}{12x^{2}}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x\times x}\) - step8: Multiply the terms: \(\frac{\left(2x+3\right)\times 4\times 3x}{12x^{2}}+\frac{7\times 3}{12x^{2}}-\frac{\left(4x+1\right)\times 4x\times x}{12x^{2}}\) - step9: Transform the expression: \(\frac{\left(2x+3\right)\times 4\times 3x+7\times 3-\left(4x+1\right)\times 4x\times x}{12x^{2}}\) - step10: Multiply the terms: \(\frac{24x^{2}+36x+7\times 3-\left(4x+1\right)\times 4x\times x}{12x^{2}}\) - step11: Multiply the numbers: \(\frac{24x^{2}+36x+21-\left(4x+1\right)\times 4x\times x}{12x^{2}}\) - step12: Multiply the terms: \(\frac{24x^{2}+36x+21-\left(16x^{3}+4x^{2}\right)}{12x^{2}}\) - step13: Calculate: \(\frac{20x^{2}+36x+21-16x^{3}}{12x^{2}}\) Calculate or simplify the expression \( (2/3) + ((3*x + 2)/x) - ((x + 4)/(2*x)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{3}+\left(\frac{\left(3x+2\right)}{x}\right)-\left(\frac{\left(x+4\right)}{2x}\right)\) - step1: Remove the parentheses: \(\frac{2}{3}+\left(\frac{3x+2}{x}\right)-\left(\frac{x+4}{2x}\right)\) - step2: Remove the parentheses: \(\frac{2}{3}+\frac{3x+2}{x}-\left(\frac{x+4}{2x}\right)\) - step3: Remove the parentheses: \(\frac{2}{3}+\frac{3x+2}{x}-\frac{x+4}{2x}\) - step4: Reduce fractions to a common denominator: \(\frac{2\times 2x}{3\times 2x}+\frac{\left(3x+2\right)\times 3\times 2}{x\times 3\times 2}-\frac{\left(x+4\right)\times 3}{2x\times 3}\) - step5: Multiply the numbers: \(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{x\times 3\times 2}-\frac{\left(x+4\right)\times 3}{2x\times 3}\) - step6: Multiply the numbers: \(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{6x}-\frac{\left(x+4\right)\times 3}{2x\times 3}\) - step7: Multiply the numbers: \(\frac{2\times 2x}{6x}+\frac{\left(3x+2\right)\times 3\times 2}{6x}-\frac{\left(x+4\right)\times 3}{6x}\) - step8: Transform the expression: \(\frac{2\times 2x+\left(3x+2\right)\times 3\times 2-\left(x+4\right)\times 3}{6x}\) - step9: Multiply the terms: \(\frac{4x+\left(3x+2\right)\times 3\times 2-\left(x+4\right)\times 3}{6x}\) - step10: Multiply the terms: \(\frac{4x+18x+12-\left(x+4\right)\times 3}{6x}\) - step11: Multiply the terms: \(\frac{4x+18x+12-\left(3x+12\right)}{6x}\) - step12: Calculate: \(\frac{19x}{6x}\) - step13: Reduce the fraction: \(\frac{19}{6}\) Calculate or simplify the expression \( (5/6) - (4*q/p) + (4*p/q) \). Simplify the expression by following steps: - step0: Solution: \(\frac{5}{6}-\frac{4q}{p}+\frac{4p}{q}\) - step1: Reduce fractions to a common denominator: \(\frac{5pq}{6pq}-\frac{4q\times 6q}{p\times 6q}+\frac{4p\times 6p}{q\times 6p}\) - step2: Reorder the terms: \(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{q\times 6p}\) - step3: Reorder the terms: \(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{6qp}\) - step4: Rewrite the expression: \(\frac{5pq}{6pq}-\frac{4q\times 6q}{6pq}+\frac{4p\times 6p}{6pq}\) - step5: Transform the expression: \(\frac{5pq-4q\times 6q+4p\times 6p}{6pq}\) - step6: Multiply the terms: \(\frac{5pq-24q^{2}+4p\times 6p}{6pq}\) - step7: Multiply the terms: \(\frac{5pq-24q^{2}+24p^{2}}{6pq}\) Calculate or simplify the expression \( (5*x + 2)/5 - (3*x + 10)/3 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(5x+2\right)}{5}-\frac{\left(3x+10\right)}{3}\) - step1: Remove the parentheses: \(\frac{5x+2}{5}-\frac{3x+10}{3}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(5x+2\right)\times 3}{5\times 3}-\frac{\left(3x+10\right)\times 5}{3\times 5}\) - step3: Multiply the numbers: \(\frac{\left(5x+2\right)\times 3}{15}-\frac{\left(3x+10\right)\times 5}{3\times 5}\) - step4: Multiply the numbers: \(\frac{\left(5x+2\right)\times 3}{15}-\frac{\left(3x+10\right)\times 5}{15}\) - step5: Transform the expression: \(\frac{\left(5x+2\right)\times 3-\left(3x+10\right)\times 5}{15}\) - step6: Multiply the terms: \(\frac{15x+6-\left(3x+10\right)\times 5}{15}\) - step7: Multiply the terms: \(\frac{15x+6-\left(15x+50\right)}{15}\) - step8: Calculate: \(\frac{-44}{15}\) - step9: Rewrite the fraction: \(-\frac{44}{15}\) Calculate or simplify the expression \( (8*a^2 + 4*a)/(4*a) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(8a^{2}+4a\right)}{4a}\) - step1: Remove the parentheses: \(\frac{8a^{2}+4a}{4a}\) - step2: Factor: \(\frac{4a\left(2a+1\right)}{4a}\) - step3: Reduce the fraction: \(2a+1\) Let's simplify each expression step by step: ### a) \( 2 - \frac{1}{2x^2} + \frac{3}{x} \) 1. **Common Denominator**: The common denominator for the terms is \( 2x^2 \). 2. **Rewrite Each Term**: - \( 2 = \frac{4x^2}{2x^2} \) - \( -\frac{1}{2x^2} \) remains the same. - \( \frac{3}{x} = \frac{6x}{2x^2} \) 3. **Combine**: \[ \frac{4x^2 - 1 + 6x}{2x^2} \] **Final Result**: \( \frac{4x^2 + 6x - 1}{2x^2} \) --- ### b) \( \frac{5}{6} - \frac{4q}{p} + \frac{4p}{q} \) 1. **Common Denominator**: The common denominator is \( 6pq \). 2. **Rewrite Each Term**: - \( \frac{5}{6} = \frac{5pq}{6pq} \) - \( -\frac{4q}{p} = -\frac{24q^2}{6pq} \) - \( \frac{4p}{q} = \frac{24p^2}{6pq} \) 3. **Combine**: \[ \frac{5pq - 24q^2 + 24p^2}{6pq} \] **Final Result**: \( \frac{5pq - 24q^2 + 24p^2}{6pq} \) --- ### c) \( \frac{8a^2 + 4a}{4a} \) 1. **Simplify**: \[ \frac{8a^2}{4a} + \frac{4a}{4a} = 2a + 1 \] **Final Result**: \( 2a + 1 \) --- ### d) \( \frac{5x + 2}{5} - \frac{3x + 10}{3} \) 1. **Common Denominator**: The common denominator is \( 15 \). 2. **Rewrite Each Term**: - \( \frac{5x + 2}{5} = \frac{3(5x + 2)}{15} = \frac{15x + 6}{15} \) - \( -\frac{3x + 10}{3} = -\frac{5(3x + 10)}{15} = -\frac{15x + 50}{15} \) 3. **Combine**: \[ \frac{15x + 6 - 15x - 50}{15} = \frac{-44}{15} \] **Final Result**: \( -\frac{44}{15} \) --- ### e) \( \frac{2}{3} + \frac{3x + 2}{x} - \frac{x + 4}{2x} \) 1. **Common Denominator**: The common denominator is \( 6x \). 2. **Rewrite Each Term**: - \( \frac{2}{3} = \frac{4x}{6x} \) - \( \frac{3x + 2}{x} = \frac{6(3x + 2)}{6x} = \frac{18x + 12}{6x} \) - \( -\frac{x + 4}{2x} = -\frac{3(x + 4)}{6x} = -\frac{3x + 12}{6x} \) 3. **Combine**: \[ \frac{4x + 18x + 12 - 3x - 12}{6x} = \frac{19x}{6x} = \frac{19}{6} \] **Final Result**: \( \frac{19}{6} \) --- ### f) \( \frac{2x + 3}{x} + \frac{7}{4x^2} - \frac{4x + 1}{3} \) 1. **Common Denominator**: The common denominator is \( 12x^2 \). 2. **Rewrite Each Term**: - \( \frac{2x + 3}{x} = \frac{12(2x + 3)}{12x^2} = \frac{24x + 36}{12x^2} \) - \( \frac{7}{4x^2} = \frac{21}{12x^2} \) - \( -\frac{4x + 1}{3} = -\frac{4(4x + 1)}{12x^2} = -\frac{16x + 4}{12x^2} \) 3. **Combine**: \[ \frac{24x + 36 + 21 - 16x - 4}{12x^2} = \frac{8x + 53}{12x^2} \] **Final Result**: \( \frac{8x + 53}{12x^2} \) --- ### Summary of Results: - a) \( \frac{4x^2 + 6x - 1}{2x^2} \) - b) \( \frac{5pq - 24q^2 + 24p^2}{6pq} \) - c) \( 2a + 1 \) - d) \( -\frac{44}{15} \) - e) \( \frac{19}{6} \) - f) \( \frac{8x + 53}{12x^2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Let’s break this down and simplify each exercise! **a)** To simplify \( 2 - \frac{1}{2x^2} + \frac{3}{x} \), first, find a common denominator which is \( 2x^2 \). Rewrite the terms: \[ 2 = \frac{4x^2}{2x^2}, \quad -\frac{1}{2x^2} = -\frac{1}{2x^2}, \quad \frac{3}{x} = \frac{6x}{2x^2} \] Now combine: \[ \frac{4x^2 + 6x - 1}{2x^2} \] So the simplified expression is \( \frac{4x^2 + 6x - 1}{2x^2} \). **b)** For \( \frac{5}{6} - \frac{4q}{p} + \frac{4p}{q} \), the common denominator is \( 6pq \). Rewrite the terms: \[ \frac{5}{6} = \frac{5pq}{6pq}, \quad -\frac{4q}{p} = -\frac{24q^2}{6pq}, \quad \frac{4p}{q} = \frac{24p^2}{6pq} \] Combine: \[ \frac{5pq - 24q^2 + 24p^2}{6pq} \] So, the result is \( \frac{5pq + 24p^2 - 24q^2}{6pq} \). **c)** For \( \frac{8a^2 + 4a}{4a} \), simplify as follows: \[ \frac{4a(2a + 1)}{4a} = 2a + 1 \quad(\text{cancel } 4a) \] **d)** In \( \frac{5x + 2}{5} - \frac{3x + 10}{3} \), the common denominator is 15: \[ \frac{3(5x + 2)}{15} - \frac{5(3x + 10)}{15} = \frac{(15x + 6) - (15x + 50)}{15} = \frac{6 - 50}{15} = -\frac{44}{15} \] **e)** For \( \frac{2}{3} + \frac{3x + 2}{x} - \frac{x + 4}{2x} \), use a common denominator \( 6x \): \[ \frac{4x}{6x} + \frac{18x + 12}{6x} - \frac{3(x + 4)}{6x} = \frac{4x + 18x + 12 - 3x - 12}{6x} \] Combine to get: \[ \frac{19x}{6x} = \frac{19}{6} \] **f)** In \( \frac{2x + 3}{x} + \frac{7}{4x^2} - \frac{4x + 1}{3} \), find a common denominator \( 12x^2 \): \[ \frac{12(2x + 3)}{12x} + \frac{21}{12x^2} - \frac{4(4x + 1)x^2}{12} = \frac{(24x + 36) + 21 - (16x^2 + 4x)}{12x^2} \] Thus, combine it all to get: \[ \frac{-16x^2 + 20x + 57}{12x^2} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy