TEST YOURSELF: Using the table of values of the trigonometric ratios for \( 30^{\circ}, 45^{\circ} \), and 6 expressions. 1. \( \sec 60^{\circ} \cot 45^{\circ} \) 2. \( \sec 45^{\circ} \csc 45^{\circ}+\sec 60^{\circ} \cot 30^{\circ} \) 3. \( \csc 60^{\circ}-\tan 45^{\circ}+\cos 60^{\circ} \) 4. \( 3 \tan 60^{\circ}+\cot 30^{\circ}-2 \cot 45^{\circ} \) 5. \( \csc 60^{\circ}-\sec 30^{\circ}+\csc 45^{\circ} \) 4.
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
The Deep Dive
Let's break down the expressions step by step using the trigonometric values for \(30^{\circ}\), \(45^{\circ}\), and \(60^{\circ}\): 1. **Calculating \( \sec 60^{\circ} \cot 45^{\circ} \)**: - \( \sec 60^{\circ} = 2 \) (since \( \sec \theta = \frac{1}{\cos \theta} = \frac{1}{1/2} \)) - \( \cot 45^{\circ} = 1 \) (since \( \cot 45^{\circ} = \frac{\cos 45^{\circ}}{\sin 45^{\circ}} = 1 \)) - So, \( \sec 60^{\circ} \cot 45^{\circ} = 2 \cdot 1 = 2 \). 2. **Calculating \( \sec 45^{\circ} \csc 45^{\circ}+\sec 60^{\circ} \cot 30^{\circ} \)**: - \( \sec 45^{\circ} = \sqrt{2} \) (since \( \sec 45^{\circ} = \frac{1}{\cos 45^{\circ}} = \frac{1}{1/\sqrt{2}} \)) - \( \csc 45^{\circ} = \sqrt{2} \) (since \( \csc 45^{\circ} = \frac{1}{\sin 45^{\circ}} \)) - \( \sec 60^{\circ} = 2 \) and \( \cot 30^{\circ} = \sqrt{3} \). - Thus, \( \sec 45^{\circ} \csc 45^{\circ} = \sqrt{2} \cdot \sqrt{2} = 2 \) and \( \sec 60^{\circ} \cot 30^{\circ} = 2 \cdot \sqrt{3} \). - Therefore, \( 2 + 2\sqrt{3} \). 3. **Calculating \( \csc 60^{\circ}-\tan 45^{\circ}+\cos 60^{\circ} \)**: - \( \csc 60^{\circ} = \frac{2}{\sqrt{3}} \) (since \( \csc 60^{\circ} = \frac{1}{\sin 60^{\circ}} \)) - \( \tan 45^{\circ} = 1 \). - \( \cos 60^{\circ} = \frac{1}{2} \). - Thus, \( \frac{2}{\sqrt{3}} - 1 + \frac{1}{2} = \frac{2}{\sqrt{3}} - 1 + \frac{1.5}{3} = \frac{2}{\sqrt{3}} - \frac{3}{3} = \frac{2-\sqrt{3}}{\sqrt{3}} \). 4. **Calculating \( 3 \tan 60^{\circ}+\cot 30^{\circ}-2 \cot 45^{\circ} \)**: - \( \tan 60^{\circ} = \sqrt{3} \), so \( 3\tan 60^{\circ} = 3\sqrt{3} \). - \( \cot 30^{\circ} = \sqrt{3} \). - \( 2 \cot 45^{\circ} = 2 \cdot 1 = 2 \). - Assuming \( 3\sqrt{3}+\sqrt{3}-2 = 4\sqrt{3}-2 \). 5. **Calculating \( \csc 60^{\circ}-\sec 30^{\circ}+\csc 45^{\circ} \)**: - \( \csc 60^{\circ} = \frac{2}{\sqrt{3}} \), - \( \sec 30^{\circ} = \frac{2}{\sqrt{3}} \), - \( \csc 45^{\circ} = \sqrt{2} \). - Therefore, \( \frac{2}{\sqrt{3}} - \frac{2}{\sqrt{3}} + \sqrt{2} = \sqrt{2} \). Putting everything together, here are the final results: 1. **Expression 1:** \( 2 \) 2. **Expression 2:**