Question
upstudy study bank question image url

33. El recorrido de la función \( f(x)=3 x^{2}-3 \) es: A) \( \left.] \infty^{-}, 3\right] \) B) \( \left.] \infty^{-},-3\right] \) C) \( \left[3, \infty^{+}[ \right. \) D) \( \left[-3, \infty^{+}[ \right. \) E) \( [-3,3] \)

Ask by Simmons Munoz. in Chile
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El recorrido de la función \( f(x) = 3x^{2} - 3 \) es [–3, ∞⁺[.

Solution

La función es f(x) = 3x² – 3, es decir, es una función cuadrática con coeficiente principal positivo (3), por lo que la parábola abre hacia arriba y presenta un mínimo. Calculamos el valor del mínimo evaluando la función en x = 0:  f(0) = 3(0)² – 3 = –3. Así, f(x) toma todos los valores mayores o iguales a –3. Por lo tanto, el recorrido es {y ∈ ℝ | y ≥ –3}, lo que se expresa como [–3, ∞⁺[. La respuesta correcta es la opción D.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para determinar el recorrido de la función \( f(x)=3x^{2}-3 \), primero observamos que es una parábola que abre hacia arriba (ya que el coeficiente de \( x^2 \) es positivo). La función alcanza su valor mínimo en el vértice, que podemos encontrar usando la fórmula \( x = -\frac{b}{2a} \). En este caso, el vértice se encuentra en \( x=0 \), y evaluando \( f(0) \) obtenemos \( f(0) = -3 \). Por lo tanto, el recorrido de \( f(x) \) es \( \left[-3, \infty^{+}\right[ \). Además, en la sociedad actual, comprender funciones matemáticas como esta tiene un uso práctico en campos como la ingeniería y la física. Las parábolas, por ejemplo, se utilizan para modelar trayectorias de proyectiles o en el diseño de estructuras, como puentes. Así, el estudio de estas funciones permite una mejor apreciación de cómo los conceptos matemáticos se relacionan con el mundo real.

Related Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy