Answer
- **Question 1:**
- 1.1 \( 5\sqrt{3} \)
- 1.2 \( 8\sqrt{2} \)
- 1.3 \( 4 \)
- 1.4 \( 5\sqrt{3} \)
- **Question 2:**
- 2.1 \( 7\sqrt{2} \)
- 2.2 \( 3\sqrt{3} \)
- 2.3 \( 3\sqrt{2} \)
- 2.4 \( 4 \)
- 2.5 \( 5\sqrt{2} \)
- 2.6 \( \sqrt{5} \)
- **Question 3:**
- 3.1 \( \frac{5\sqrt{3}}{3} \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(50+18\)
- step1: Add the numbers:
\(68\)
Calculate or simplify the expression \( 18+32 \).
Calculate the value by following steps:
- step0: Calculate:
\(18+32\)
- step1: Add the numbers:
\(50\)
Calculate or simplify the expression \( 5/\sqrt(3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{5}{\sqrt{3}}\)
- step1: Multiply by the Conjugate:
\(\frac{5\sqrt{3}}{\sqrt{3}\times \sqrt{3}}\)
- step2: Multiply the numbers:
\(\frac{5\sqrt{3}}{3}\)
Calculate or simplify the expression \( 48/3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{48}{3}\)
- step1: Reduce the numbers:
\(\frac{16}{1}\)
- step2: Calculate:
\(16\)
Calculate or simplify the expression \( 75 \).
Numbers by following steps:
- step0: Solution:
\(75\)
Calculate or simplify the expression \( 8*2 \).
Calculate the value by following steps:
- step0: Calculate:
\(8\times 2\)
- step1: Multiply the numbers:
\(16\)
Calculate or simplify the expression \( 75-12 \).
Calculate the value by following steps:
- step0: Calculate:
\(75-12\)
- step1: Subtract the numbers:
\(63\)
Calculate or simplify the expression \( 6*3 \).
Calculate the value by following steps:
- step0: Calculate:
\(6\times 3\)
- step1: Multiply the numbers:
\(18\)
Calculate or simplify the expression \( 27+12 \).
Calculate the value by following steps:
- step0: Calculate:
\(27+12\)
- step1: Add the numbers:
\(39\)
Calculate or simplify the expression \( 18+8 \).
Calculate the value by following steps:
- step0: Calculate:
\(18+8\)
- step1: Add the numbers:
\(26\)
Calculate or simplify the expression \( 20+45-80 \).
Calculate the value by following steps:
- step0: Calculate:
\(20+45-80\)
- step1: Calculate:
\(-15\)
Let's solve the problems step by step.
### Question 1: Simplify the following surds
1.1 \( \sqrt{75} \)
To simplify \( \sqrt{75} \):
\[
\sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}
\]
1.2 \( \sqrt{50} + \sqrt{18} \)
To simplify \( \sqrt{50} \) and \( \sqrt{18} \):
\[
\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}
\]
\[
\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}
\]
Now combine:
\[
\sqrt{50} + \sqrt{18} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}
\]
1.3 \( \frac{\sqrt{48}}{\sqrt{3}} \)
To simplify \( \frac{\sqrt{48}}{\sqrt{3}} \):
\[
\frac{\sqrt{48}}{\sqrt{3}} = \sqrt{\frac{48}{3}} = \sqrt{16} = 4
\]
1.4 \( \sqrt{27} + \sqrt{12} \)
To simplify \( \sqrt{27} \) and \( \sqrt{12} \):
\[
\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}
\]
\[
\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
\]
Now combine:
\[
\sqrt{27} + \sqrt{12} = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}
\]
### Question 2: Perform the following operations with surds
2.1 \( \sqrt{18} + \sqrt{32} \)
To simplify:
\[
\sqrt{18} = 3\sqrt{2}, \quad \sqrt{32} = 4\sqrt{2}
\]
Combine:
\[
\sqrt{18} + \sqrt{32} = 3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}
\]
2.2 \( \sqrt{75} - \sqrt{12} \)
To simplify:
\[
\sqrt{75} = 5\sqrt{3}, \quad \sqrt{12} = 2\sqrt{3}
\]
Combine:
\[
\sqrt{75} - \sqrt{12} = 5\sqrt{3} - 2\sqrt{3} = 3\sqrt{3}
\]
2.3 \( \sqrt{6} \times \sqrt{3} \)
To simplify:
\[
\sqrt{6} \times \sqrt{3} = \sqrt{18} = 3\sqrt{2}
\]
2.4 \( \sqrt{8} \times \sqrt{2} \)
To simplify:
\[
\sqrt{8} \times \sqrt{2} = \sqrt{16} = 4
\]
2.5 \( \sqrt{18} + \sqrt{8} \)
To simplify:
\[
\sqrt{18} = 3\sqrt{2}, \quad \sqrt{8} = 2\sqrt{2}
\]
Combine:
\[
\sqrt{18} + \sqrt{8} = 3\sqrt{2} + 2\sqrt{2} = 5\sqrt{2}
\]
2.6 \( \sqrt{20} + \sqrt{45} - \sqrt{80} \)
To simplify:
\[
\sqrt{20} = 2\sqrt{5}, \quad \sqrt{45} = 3\sqrt{5}, \quad \sqrt{80} = 4\sqrt{5}
\]
Combine:
\[
\sqrt{20} + \sqrt{45} - \sqrt{80} = 2\sqrt{5} + 3\sqrt{5} - 4\sqrt{5} = 1\sqrt{5} = \sqrt{5}
\]
### Question 3: Rationalize the denominator of the following expressions
3.1 \( \frac{5}{\sqrt{3}} \)
To rationalize:
\[
\frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3}
\]
### Summary of Results
- **Question 1:**
- 1.1 \( 5\sqrt{3} \)
- 1.2 \( 8\sqrt{2} \)
- 1.3 \( 4 \)
- 1.4 \( 5\sqrt{3} \)
- **Question 2:**
- 2.1 \( 7\sqrt{2} \)
- 2.2 \( 3\sqrt{3} \)
- 2.3 \( 3\sqrt{2} \)
- 2.4 \( 4 \)
- 2.5 \( 5\sqrt{2} \)
- 2.6 \( \sqrt{5} \)
- **Question 3:**
- 3.1 \( \frac{5\sqrt{3}}{3} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution