Question
upstudy study bank question image url

Calculate the area of the circle for med by the following equation using integration \( (x-7)^{2}+(y+5)^{2}=25 \)

Ask by Lynch Adkins. in Spain
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El área de la circunferencia es \( 25\pi \).

Solution

Queremos calcular el área de la circunferencia definida por   (x – 7)² + (y + 5)² = 25 Usaremos el método de integración en coordenadas cartesianas. 1. Identificación de la circunferencia: La ecuación es la de una circunferencia con centro (7, –5) y radio r = √25 = 5. Por tanto, el área conocida sería A = πr² = 25π. Sin embargo, demostraremos este resultado mediante integración. 2. Expresar la ecuación en función de y: La ecuación se puede escribir como   (y + 5)² = 25 – (x – 7)² Resolviendo para y obtenemos dos funciones (la parte “superior” e “inferior” de la circunferencia):   y = –5 + √(25 – (x – 7)²)  (½ superior)   y = –5 – √(25 – (x – 7)²)  (½ inferior) 3. Definir el área como la integral de la diferencia de las dos ramas: El diferencial de área en x es la distancia vertical entre ambas ramas. La diferencia es:   [–5 + √(25 – (x – 7)²)] – [–5 – √(25 – (x – 7)²)] = 2√(25 – (x – 7)²) Los límites en x corresponden a donde la raíz se hace cero, es decir:   25 – (x – 7)² = 0 → (x – 7)² = 25 → x – 7 = ±5 → x = 2 y x = 12 4. Montar la integral: El área A se obtiene como   A = ∫[x=2]^[12] 2√(25 – (x – 7)²) dx 5. Haciendo el cambio de variable: Sea u = x – 7, de donde du = dx. Cuando x = 2, u = 2 – 7 = –5; cuando x = 12, u = 12 – 7 = 5. La integral se transforma en:   A = 2 ∫[u=–5]^[5] √(25 – u²) du 6. Evaluar la integral: La integral ∫[u=–a]^[a] √(a² – u²) du es conocida y vale (πa²)/2. Con a = 5, se tiene   ∫[–5]^[5] √(25 – u²) du = (25π)/2 Por tanto,   A = 2 · (25π/2) = 25π Conclusión: El área de la circunferencia es 25π.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To calculate the area of the circle given by the equation \( (x-7)^{2}+(y+5)^{2}=25 \), we realize that this is the standard form of a circle centered at \( (7, -5) \) with a radius \( r = 5 \) (since \( r^2 = 25 \)). The area of a circle can also be confirmed using integration by setting up the following integral in terms of \( y \): \[ A = 2 \int_{-5}^{0} \sqrt{25 - (y + 5)^{2}} \, dy \] This computes half of the area because we will then multiply by 2 to account for both halves of the circle, ultimately leading to the formula \( A = \pi r^2 \), which gives \( A = 25\pi \). To apply this area practical, circles show up everywhere—in nature and in city planning! Think about how roundabouts create smoother traffic flow or how the design of sporting fields, like baseball diamonds, hinges on circular geometry. Understanding areas of circles equips you with the tools to design engaging outdoor spaces or plan effective transportation routes. Who knew mathematics could shape the world so literally?

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy