Answer
The final amount due on the loan is \$8,796.73.
Solution
To solve this problem, we will calculate the interest accrued on the loan at different stages and then determine the final amount due after the partial payments.
### Step 1: Calculate the interest for the first 40 days
The formula for ordinary interest is given by:
\[
I = P \times r \times t
\]
where:
- \( I \) is the interest,
- \( P \) is the principal amount,
- \( r \) is the interest rate (as a decimal),
- \( t \) is the time in years.
For the first 40 days:
- \( P = 12000 \)
- \( r = 0.07 \)
- \( t = \frac{40}{360} \) (since ordinary interest uses a 360-day year)
Now, we can calculate the interest for the first 40 days.
### Step 2: Calculate the new balance after the first payment
After 40 days, a payment of \( \$ 1,500 \) is made. We will subtract this payment from the total amount due (principal + interest).
### Step 3: Calculate the interest for the next 60 days
After the first payment, we will calculate the interest on the remaining balance for the next 60 days.
### Step 4: Calculate the new balance after the second payment
After 60 days, a second payment of \( \$ 2,000 \) is made. We will again subtract this payment from the total amount due.
### Step 5: Calculate the interest for the final 60 days
Finally, we will calculate the interest on the remaining balance for the last 60 days.
### Step 6: Calculate the final amount due
Now, let's perform these calculations step by step.
#### Step 1: Interest for the first 40 days
\[
I_1 = 12000 \times 0.07 \times \frac{40}{360}
\]
#### Step 2: New balance after the first payment
\[
\text{New Balance}_1 = 12000 + I_1 - 1500
\]
#### Step 3: Interest for the next 60 days
\[
I_2 = \text{New Balance}_1 \times 0.07 \times \frac{60}{360}
\]
#### Step 4: New balance after the second payment
\[
\text{New Balance}_2 = \text{New Balance}_1 + I_2 - 2000
\]
#### Step 5: Interest for the final 60 days
\[
I_3 = \text{New Balance}_2 \times 0.07 \times \frac{60}{360}
\]
#### Step 6: Final amount due
\[
\text{Final Amount} = \text{New Balance}_2 + I_3
\]
Now, let's calculate these values step by step.
### Calculating the values
1. Calculate \( I_1 \)
2. Calculate \( \text{New Balance}_1 \)
3. Calculate \( I_2 \)
4. Calculate \( \text{New Balance}_2 \)
5. Calculate \( I_3 \)
6. Calculate the final amount due
Let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(12000\times 0.07\left(\frac{60}{360}\right)\)
- step1: Reduce the fraction:
\(12000\times 0.07\times \frac{1}{6}\)
- step2: Multiply the terms:
\(840\times \frac{1}{6}\)
- step3: Multiply the numbers:
\(140\)
Calculate or simplify the expression \( 12000 * 0.07 * (40/360) \).
Calculate the value by following steps:
- step0: Calculate:
\(12000\times 0.07\left(\frac{40}{360}\right)\)
- step1: Reduce the fraction:
\(12000\times 0.07\times \frac{1}{9}\)
- step2: Multiply the terms:
\(840\times \frac{1}{9}\)
- step3: Multiply the numbers:
\(\frac{280}{3}\)
Calculate or simplify the expression \( (12000 + (12000 * 0.07 * (40/360)) - 1500) * 0.07 * (60/360) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\)
- step1: Reduce the fraction:
\(\left(12000+\left(12000\times 0.07\times \frac{1}{9}\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\)
- step2: Multiply the terms:
\(\left(12000+\frac{280}{3}-1500\right)\times 0.07\left(\frac{60}{360}\right)\)
- step3: Calculate:
\(\frac{31780}{3}\times 0.07\left(\frac{60}{360}\right)\)
- step4: Reduce the fraction:
\(\frac{31780}{3}\times 0.07\times \frac{1}{6}\)
- step5: Multiply the terms:
\(\frac{11123}{15}\times \frac{1}{6}\)
- step6: Multiply the fractions:
\(\frac{11123}{15\times 6}\)
- step7: Multiply:
\(\frac{11123}{90}\)
Calculate or simplify the expression \( ((12000 + (12000 * 0.07 * (40/360)) - 1500) + ((12000 + (12000 * 0.07 * (40/360)) - 1500) * 0.07 * (60/360)) - 2000) * 0.07 * (60/360) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)+\left(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step1: Reduce the fraction:
\(\left(\left(12000+\left(12000\times 0.07\times \frac{1}{9}\right)-1500\right)+\left(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step2: Multiply the terms:
\(\left(\left(12000+\frac{280}{3}-1500\right)+\left(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step3: Calculate:
\(\left(\frac{31780}{3}+\left(\left(12000+\left(12000\times 0.07\left(\frac{40}{360}\right)\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step4: Reduce the fraction:
\(\left(\frac{31780}{3}+\left(\left(12000+\left(12000\times 0.07\times \frac{1}{9}\right)-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step5: Multiply the terms:
\(\left(\frac{31780}{3}+\left(\left(12000+\frac{280}{3}-1500\right)\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step6: Calculate:
\(\left(\frac{31780}{3}+\left(\frac{31780}{3}\times 0.07\left(\frac{60}{360}\right)\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step7: Reduce the fraction:
\(\left(\frac{31780}{3}+\left(\frac{31780}{3}\times 0.07\times \frac{1}{6}\right)-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step8: Multiply the terms:
\(\left(\frac{31780}{3}+\frac{11123}{90}-2000\right)\times 0.07\left(\frac{60}{360}\right)\)
- step9: Calculate:
\(\frac{784523}{90}\times 0.07\left(\frac{60}{360}\right)\)
- step10: Reduce the fraction:
\(\frac{784523}{90}\times 0.07\times \frac{1}{6}\)
- step11: Multiply the terms:
\(\frac{5491661}{9000}\times \frac{1}{6}\)
- step12: Multiply the fractions:
\(\frac{5491661}{9000\times 6}\)
- step13: Multiply:
\(\frac{5491661}{54000}\)
Calculate or simplify the expression \( 12000 + (280/3) - 1500 \).
Calculate the value by following steps:
- step0: Calculate:
\(12000+\frac{280}{3}-1500\)
- step1: Subtract the numbers:
\(10500+\frac{280}{3}\)
- step2: Reduce fractions to a common denominator:
\(\frac{10500\times 3}{3}+\frac{280}{3}\)
- step3: Transform the expression:
\(\frac{10500\times 3+280}{3}\)
- step4: Multiply the numbers:
\(\frac{31500+280}{3}\)
- step5: Add the numbers:
\(\frac{31780}{3}\)
Calculate or simplify the expression \( (140 + (11123/90) - 2000) \).
Calculate the value by following steps:
- step0: Calculate:
\(140+\frac{11123}{90}-2000\)
- step1: Subtract the numbers:
\(-1860+\frac{11123}{90}\)
- step2: Reduce fractions to a common denominator:
\(-\frac{1860\times 90}{90}+\frac{11123}{90}\)
- step3: Transform the expression:
\(\frac{-1860\times 90+11123}{90}\)
- step4: Multiply the numbers:
\(\frac{-167400+11123}{90}\)
- step5: Add the numbers:
\(\frac{-156277}{90}\)
- step6: Rewrite the fraction:
\(-\frac{156277}{90}\)
Calculate or simplify the expression \( (10593.3333 + (5491661/54000)) - 2000 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(10593.3333+\frac{5491661}{54000}\right)-2000\)
- step1: Add the numbers:
\(\frac{360957287}{33750}-2000\)
- step2: Reduce fractions to a common denominator:
\(\frac{360957287}{33750}-\frac{2000\times 33750}{33750}\)
- step3: Transform the expression:
\(\frac{360957287-2000\times 33750}{33750}\)
- step4: Multiply the numbers:
\(\frac{360957287-67500000}{33750}\)
- step5: Subtract the numbers:
\(\frac{293457287}{33750}\)
Calculate or simplify the expression \( (10593.3333 + (5491661/54000)) \).
Calculate the value by following steps:
- step0: Calculate:
\(10593.3333+\frac{5491661}{54000}\)
- step1: Convert the expressions:
\(\frac{105933333}{10000}+\frac{5491661}{54000}\)
- step2: Reduce fractions to a common denominator:
\(\frac{105933333\times 27}{10000\times 27}+\frac{5491661\times 5}{54000\times 5}\)
- step3: Multiply the numbers:
\(\frac{105933333\times 27}{270000}+\frac{5491661\times 5}{54000\times 5}\)
- step4: Multiply the numbers:
\(\frac{105933333\times 27}{270000}+\frac{5491661\times 5}{270000}\)
- step5: Transform the expression:
\(\frac{105933333\times 27+5491661\times 5}{270000}\)
- step6: Multiply the numbers:
\(\frac{2860199991+5491661\times 5}{270000}\)
- step7: Multiply the numbers:
\(\frac{2860199991+27458305}{270000}\)
- step8: Add the numbers:
\(\frac{2887658296}{270000}\)
- step9: Reduce the fraction:
\(\frac{360957287}{33750}\)
Calculate or simplify the expression \( (8695.0307 + (5491661/54000)) \).
Calculate the value by following steps:
- step0: Calculate:
\(8695.0307+\frac{5491661}{54000}\)
- step1: Convert the expressions:
\(\frac{86950307}{10000}+\frac{5491661}{54000}\)
- step2: Reduce fractions to a common denominator:
\(\frac{86950307\times 27}{10000\times 27}+\frac{5491661\times 5}{54000\times 5}\)
- step3: Multiply the numbers:
\(\frac{86950307\times 27}{270000}+\frac{5491661\times 5}{54000\times 5}\)
- step4: Multiply the numbers:
\(\frac{86950307\times 27}{270000}+\frac{5491661\times 5}{270000}\)
- step5: Transform the expression:
\(\frac{86950307\times 27+5491661\times 5}{270000}\)
- step6: Multiply the numbers:
\(\frac{2347658289+5491661\times 5}{270000}\)
- step7: Multiply the numbers:
\(\frac{2347658289+27458305}{270000}\)
- step8: Add the numbers:
\(\frac{2375116594}{270000}\)
- step9: Reduce the fraction:
\(\frac{1187558297}{135000}\)
Let's summarize the calculations step by step:
### Step 1: Interest for the first 40 days
\[
I_1 = 12000 \times 0.07 \times \frac{40}{360} = \frac{280}{3} \approx 93.33
\]
### Step 2: New balance after the first payment
\[
\text{New Balance}_1 = 12000 + 93.33 - 1500 = 10593.33
\]
### Step 3: Interest for the next 60 days
\[
I_2 = 10593.33 \times 0.07 \times \frac{60}{360} = \frac{11123}{90} \approx 123.58
\]
### Step 4: New balance after the second payment
\[
\text{New Balance}_2 = 10593.33 + 123.58 - 2000 = 8695.03
\]
### Step 5: Interest for the final 60 days
\[
I_3 = 8695.03 \times 0.07 \times \frac{60}{360} = \frac{5491661}{54000} \approx 101.70
\]
### Step 6: Final amount due
\[
\text{Final Amount} = 8695.03 + 101.70 \approx 8796.73
\]
Thus, the final amount due on the loan after 160 days, rounded to the nearest cent, is:
\[
\boxed{8796.73}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution