Answer
The results are:
- \( -\frac{9}{7} \times \frac{-5}{12} = \frac{15}{28} \)
- \( \frac{4}{5} \) of \( 125 \times \frac{7}{4} \times 2 \frac{1}{7} = 375 \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(-\frac{9}{7}\times \frac{-5}{12}\)
- step1: Rewrite the fraction:
\(-\frac{9}{7}\left(-\frac{5}{12}\right)\)
- step2: Use the rules for multiplication and division:
\(\frac{9}{7}\times \frac{5}{12}\)
- step3: Reduce the numbers:
\(\frac{3}{7}\times \frac{5}{4}\)
- step4: Multiply the fractions:
\(\frac{3\times 5}{7\times 4}\)
- step5: Multiply:
\(\frac{15}{28}\)
Calculate or simplify the expression \( \frac{4}{5} \times 125 \times \frac{7}{4} \times 2 + \frac{1}{7} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{4}{5}\times 125\times \frac{7}{4}\times 2+\frac{1}{7}\)
- step1: Multiply the terms:
\(350+\frac{1}{7}\)
- step2: Reduce fractions to a common denominator:
\(\frac{350\times 7}{7}+\frac{1}{7}\)
- step3: Transform the expression:
\(\frac{350\times 7+1}{7}\)
- step4: Multiply the numbers:
\(\frac{2450+1}{7}\)
- step5: Add the numbers:
\(\frac{2451}{7}\)
Let's solve the two parts of your problem step by step.
### Part 1: Calculate \( -\frac{9}{7} \times \frac{-5}{12} \)
1. **Multiply the fractions**:
\[
-\frac{9}{7} \times \frac{-5}{12} = \frac{9 \times 5}{7 \times 12} = \frac{45}{84}
\]
2. **Simplify the fraction**:
- The greatest common divisor (GCD) of 45 and 84 is 3.
- Dividing both the numerator and the denominator by 3:
\[
\frac{45 \div 3}{84 \div 3} = \frac{15}{28}
\]
Thus, the result of \( -\frac{9}{7} \times \frac{-5}{12} \) is \( \frac{15}{28} \) or approximately \( 0.5357142857 \).
### Part 2: Calculate \( \frac{4}{5} \) of \( 125 \times \frac{7}{4} \times 2 \frac{1}{7} \)
1. **Convert \( 2 \frac{1}{7} \) to an improper fraction**:
\[
2 \frac{1}{7} = \frac{2 \times 7 + 1}{7} = \frac{14 + 1}{7} = \frac{15}{7}
\]
2. **Calculate the expression**:
\[
125 \times \frac{7}{4} \times \frac{15}{7}
\]
- The \( \frac{7}{4} \) and \( \frac{15}{7} \) can be simplified:
\[
\frac{7}{4} \times \frac{15}{7} = \frac{15}{4}
\]
- Now multiply by 125:
\[
125 \times \frac{15}{4} = \frac{125 \times 15}{4} = \frac{1875}{4}
\]
3. **Calculate \( \frac{4}{5} \) of \( \frac{1875}{4} \)**:
\[
\frac{4}{5} \times \frac{1875}{4} = \frac{1875}{5} = 375
\]
Thus, the result of \( \frac{4}{5} \) of \( 125 \times \frac{7}{4} \times 2 \frac{1}{7} \) is \( 375 \).
### Final Results:
- \( -\frac{9}{7} \times \frac{-5}{12} = \frac{15}{28} \)
- \( \frac{4}{5} \) of \( 125 \times \frac{7}{4} \times 2 \frac{1}{7} = 375 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution