Simpluyy and write yoor answers with positue exponents \( \begin{array}{ll}\text { a) } \frac{-3}{x^{-4}} & \text { (b) } \frac{x^{-1}}{2} \\ \text { c) } \frac{3 x^{-2}}{-5 x y} & \text { (d) } \frac{(2 n)^{-2}}{3 n^{-6}} \\ \text { (e) } \frac{3 x^{2} y^{4}}{4 x^{-5}} \times \frac{8 x^{2} y^{-3}}{9 y^{-1}} \\ \text { (f) }\left(\frac{-3 a^{-2} b^{2}}{5 a^{3} b^{-1}}\right)^{-2}\end{array} \)
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Mind Expander
Sure! Let's simplify each expression with positive exponents: a) \( \frac{-3}{x^{-4}} = -3x^{4} \) b) \( \frac{x^{-1}}{2} = \frac{1}{2x} \) c) \( \frac{3 x^{-2}}{-5 x y} = -\frac{3}{5xy} \cdot x^{2} = -\frac{3x^{2}}{5xy} = -\frac{3x}{5y} \) d) \( \frac{(2n)^{-2}}{3n^{-6}} = \frac{1}{(2n)^{2}} \cdot \frac{n^{6}}{3} = \frac{n^{6}}{12n^{2}} = \frac{n^{4}}{12} \) e) \( \frac{3 x^{2} y^{4}}{4 x^{-5}} \times \frac{8 x^{2} y^{-3}}{9 y^{-1}} = \frac{3x^{2}y^{4} \cdot 8x^{2}y^{-3}}{36x^{-5}y^{-1}} = \frac{24x^{4}y^{1}}{36x^{-5}} = \frac{2x^{9}y}{3} \) f) \( \left(\frac{-3a^{-2}b^{2}}{5a^{3}b^{-1}}\right)^{-2} = \left(-\frac{3b^{3}}{5a^{1}}\right)^{-2} = \frac{25a^{2}}{9b^{6}} \) Look at those positive exponents shine!