2) Find the exact value of \( \cos (a-\beta) \) if \( \sin \alpha=-\frac{3}{5}, \frac{3 \pi}{2}<\alpha<2 \pi \) and \( \cos \beta=-\frac{5}{13}, \frac{\pi}{2}<\beta<\pi \). a) \( 0 \frac{12}{13} \) b) \( 0-\frac{56}{65} \) c) \( 0 \frac{56}{65} \) d) \( 0-\frac{12}{13} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To find \( \cos(a - \beta) \), we can use the cosine subtraction formula: \[ \cos(a - \beta) = \cos a \cos \beta + \sin a \sin \beta \] We are given \( \sin \alpha = -\frac{3}{5} \) and the quadrant of \(\alpha\) tells us that \(\alpha\) is in the fourth quadrant. We can find \(\cos \alpha\) using the Pythagorean identity: \[ \cos^2 \alpha + \sin^2 \alpha = 1 \] \[ \cos^2 \alpha + \left(-\frac{3}{5}\right)^2 = 1 \] \[ \cos^2 \alpha + \frac{9}{25} = 1 \implies \cos^2 \alpha = \frac{16}{25} \implies \cos \alpha = \frac{4}{5} \quad (\text{since } \alpha \text{ is in the fourth quadrant}) \] Next, for \(\beta\), we have \(\cos \beta = -\frac{5}{13}\) and since \( \beta \) is in the second quadrant, we can find \( \sin \beta \): \[ \sin^2 \beta + \cos^2 \beta = 1 \] \[ \sin^2 \beta + \left(-\frac{5}{13}\right)^2 = 1 \] \[ \sin^2 \beta + \frac{25}{169} = 1 \implies \sin^2 \beta = \frac{144}{169} \implies \sin \beta = \frac{12}{13} \quad (\text{positive in the second quadrant}) \] Now substituting \( \cos \alpha \), \(\sin \alpha\), \(\cos \beta\), and \(\sin \beta\) back into the cosine subtraction formula: \[ \cos(a - \beta) = \left(\frac{4}{5}\right)\left(-\frac{5}{13}\right) + \left(-\frac{3}{5}\right)\left(\frac{12}{13}\right) \] Calculating each term: \[ = -\frac{20}{65} - \frac{36}{65} = -\frac{56}{65} \] Thus, the exact value of \(\cos(a - \beta)\) is \[ \boxed{0 - \frac{56}{65}} \] This corresponds to option b).